Coriolis coupling on the rotational and vibrational energy transfer in H2O+ Ar collisions: Classical trajectories simulation
E. Borges
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
Search for more papers by this authorG. G. Ferreira
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
Search for more papers by this authorCorresponding Author
J. P. Braga
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, BrasilSearch for more papers by this authorJ. C. Belchior
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
Search for more papers by this authorE. Borges
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
Search for more papers by this authorG. G. Ferreira
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
Search for more papers by this authorCorresponding Author
J. P. Braga
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, BrasilSearch for more papers by this authorJ. C. Belchior
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
Search for more papers by this authorAbstract
Classical trajectories studies in Cartesian coordinates are applied to analyze Coriolis coupling for the energy transfer in H2O + Ar process. Vibrational energies equal to 50 kcal/mol and 100 kcal/mol for initial rotational temperatures in the range 298–30,000 K are used as initial conditions. Initial translational temperatures for the incoming atom are selected in the same way. Effects of rotational and translational temperatures at different initial conditions are also investigated in the molecular vibrational relaxation process. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006
References
- 1 Polyansky, O. L.; Zobov, N. F.; Viti, S.; Tennyson, J.; Bernath, P. F.; Wallace, L. J Mol Spectrosc 1997, 186, 422.
- 2 Tobiason, J. D.; Utz, A. L.; Crim, F. F. J Chem Phys 1992, 97, 7437.
- 3 Carbonniere, P.; Barone, V. Chem Phys Lett 2004, 392, 365.
- 4 Starikov, V. I. J Mol Struct 1996, 384, 73.
- 5 Haub, J. G.; Orr, B. J. J Chem Phys 1987, 86, 3380.
- 6 Bewick, C. P.; Martins, J. F.; Orr, B. J. J Chem Phys 1990, 93, 8643.
- 7 Parson, R. J Chem Phys 1990, 92, 304.
- 8 Ménard-Bourcin, F.; Doyennette, L.; Ménard, J. J Chem Phys 1990, 92, 4212.
- 9 Doyennette, L.; Ménard, J.; Ménard-Bourcin, F. Chem Phys Lett 1990, 170, 197.
- 10 Doyennette, L.; Boursier, C.; Ménard, J.; Ménard-Bourcin, F. Chem Phys Lett 1992, 197, 157.
- 11 Boursier, C.; Ménard-Bourcin, F.; Doyennette, L.; Ménard, J.; Boulet, C. J Phys II France 1996, 6, 593.
- 12 Park, S. T.; Moon, H. J.; Kim, M. S. J Chem Phys 1997, 107, 9899.
- 13 Zittel, P. F.; Masturzo, D. E. Chem Phys Lett 1989, 167, 220.
- 14 Ree, J.; Shin, H. K. J Chem Phys 1989, 90, 977.
- 15 Cohen, R. C.; Busarow, K. B.; Laughlin, K. B.; Blake, G. A.; Havenith, H.; Lee, Y. T.; Saykally, R. J. J Chem Phys 1988, 89, 4494.
- 16 Fraser, G. T.; Lovas, F. J.; Suenram, R. D.; Matsumura, K. J Mol Spectrosc 1990, 144, 97.
- 17 Suzuki, S.; Bumgarner, R. E.; Stockman, P. A.; Green, P. G.; Blake, G. A. J Chem Phys 1991, 94, 824.
- 18 Arunan, E.; Emilsson, T.; Gutowsky, H. S. J Chem Phys 2002, 116, 4886.
- 19 Cohen, R. C.; Saykally, R. J. J Chem Phys 1993, 98, 6007.
- 20 Burcl, R.; Chalasiński, G.; Bukowsky, R.; Szczćesniak, M. M. J Chem Phys 1995, 103, 1498.
- 21 Hodges, M. P.; Wheatley, R. J.; Harvey, A. H. J Chem Phys 2002, 117, 7169.
- 22 Coronado, E. A.; Verladez, G. F.; Ferrero, J. C. J Phys Chem A 1999, 103, 5409.
- 23 Stace, A. J.; Murrell, J. N. J Chem Phys 1978, 68, 3028.
- 24 Hase, W. L.; Date, N.; Bhuiyan, L. B.; Buckowsky, D. J. J Phys Chem 1985, 89, 2502.
- 25 Suzukawa, H. H.; Wolfsberg, M. J Chem Phys 1978, 68, 455.
- 26 Yan, T.; Hase, W. L. J Phys Chem A 2001, 105, 2617.
- 27 Crawford, B. L.; Fletcher, W. H. J Chem Phys 1950, 20, 141.
- 28
Wilson, E. B.;
Decius, J. C.;
Cross, P. C.
Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra;
McGraw-Hill:
New York,
1955.
10.1149/1.2430134 Google Scholar
- 29
Herzberg, G.
Infrared and Raman Spectra of Polyatomic Molecules,
Van Nostrand:
New York,
1945.
10.2307/807002 Google Scholar
- 30 Borges, E.; Braga, J. P. C2V4. Fortran Code; 2005.
- 31 Ree, J.; Shin, H. K. J Chem Phys 1990, 93, 6463.
- 32 Ree, J.; Shin, H. K. Chem Phys Lett 1989, 163, 308.
- 33 Ree, J.; Shin, H. K. Chem Phys Lett 1990, 167, 220.
- 34 Tardy, D. C.; Rabinovitch, B. S. Chem Rev 1977, 77, 369.
- 35 Levine, R. D.; Bernstein, R. B. Molecular Reaction Dynamics; Clarendon: Oxford, UK, 1974.
- 36 Shin, H. K. J Phys Chem 1973, 77, 346.
- 37 Shin, H. K. Chem Phys Lett 1975, 32, 218.