Relative energies, stereoelectronic interactions, and conformational interconversion in silacycloalkanes†
Corresponding Author
Fillmore Freeman
Department of Chemistry, University of California, Irvine, CA 92697-2025
Department of Chemistry, University of California, Irvine, CA 92697-2025Search for more papers by this authorChristine Fang
Department of Chemistry, University of California, Irvine, CA 92697-2025
Search for more papers by this authorBagrat A. Shainyan
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Science, 1 Favorsky Street, 664033, Irkutsk, Russian Federation
Search for more papers by this authorCorresponding Author
Fillmore Freeman
Department of Chemistry, University of California, Irvine, CA 92697-2025
Department of Chemistry, University of California, Irvine, CA 92697-2025Search for more papers by this authorChristine Fang
Department of Chemistry, University of California, Irvine, CA 92697-2025
Search for more papers by this authorBagrat A. Shainyan
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Science, 1 Favorsky Street, 664033, Irkutsk, Russian Federation
Search for more papers by this authorThis article contains supplementary material available via the Internet at http://www.interscience.wiley.com/jpages/0020-7608/suppmat.
Abstract
Stereoelectronic hyperconjugative interactions, geometrical parameters, and relative energies of conformations and isomers of silacycloalkanes have been calculated at the B3LYP/6-311+G(d,p) level of theory. The chair conformer of silacyclohexane was calculated to be 3.89, 4.82, and 5.18 kcal/mol more stable than the respective 1,4-twist conformer, 2,5-twist conformer, and 2,5-boat transition state. Intrinsic reaction path (IRC) calculations connected the half-chair transition state to the chair and 2,5-twist conformers of silacyclohexane. The energy difference (ΔE) between the chair conformer and the half-chair transition state that connects the chair conformer and 2,5-twist conformer of silacyclohexane is 5.47 kcal/mol. The chair conformer of equatorial 1-methyl-1-silacyclohexane is 0.45 kcal/mol more stable than the chair conformer of axial 1-methyl-1-silacyclohexane. Axial 1-methyl-1-silacyclohexane is 3.53 and 4.67 kcal/mol more than its 1,4-twist and 2,5-twist conformers, and equatorial 1-methyl-1-silacyclohexane is 3.97 and 4.82 kcal/mol more stable than its 1,4-twist and 2,5-twist conformers. 1-Silabicyclo[2.2.1]heptane is 4.58 and 10.8 kcal/mol, respectively more stable than 2-silabicyclo[2.2.1]heptane and 7-silabicyclo[2.2.1]heptane. The influences of selectively replacing a CH2 group in a cycloalkane with a SiH2 group on the geometrical parameters, conformational properties, ring strain, and stereoelectronic hyperconjugative interactions are discussed. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004
Supporting Information
Filename | Description |
---|---|
suppmat_fang.pdf146.6 KB | Supporting Information file suppmat_fang.pdf |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1(a)
Eliel, E. L.;
Wilen, S. H.
Stereochemistry of Organic Compounds;
Wiley:
New York,
1994;
(b)
E. Juaristi, Ed.
Conformational Behavior of Six-Membered Rings;
VCH Publishers:
New York,
1995;
(c)
Cremer, D.;
Szabo, K. J.
In Conformational Behavior of Six-Membered Rings;
E. Juaristi, Ed.;
VCH:
New York,
1995; Chapter 3 and references therein;
(d)
Wiberg, K. B.;
Walters, V. A.;
Dailey, W. P.
J Am Chem Soc
1985, 107, 4860;
(e)
Wiberg, K. B.;
Hammer, J. D.;
Castejon, H.;
Bailey, W. F.;
DeLeon, E. L.;
Jarret, M.
J Org Chem
1999, 64,
2085;
(f)
Freeman, F.;
Kasner, M. L.;
Tsegai, Z. M.;
Hehre, W. J.
J Chem Ed
2000, 77, 661;
(g)
Carey, F. A.;
Sundberg, R. J.
Advanced Organic Chemistry Part A: Structure and Mechanisms,
4th ed.;
Kluwer Academic/Plenum: New York,
2000; Chapter 3;
(h)
Pickett, H. M.;
Strauss, H. L.
J Am Chem Soc
1970, 92, 7281;
(i)
Squillacote, M.;
Sheridan, R. S.;
Chapman, O. L.;
Anet, F. A. L.
J Am Chem Soc
1975, 97, 3244;
(j)
Cremer, D.;
Pople, J. A.
J Am Chem Soc
1975, 97, 1354;
(k)
Chiu, N. S.;
Ewbank, J. D.;
Schäfer, L.
J Mol Struct
1982, 86, 397;
10.1016/0166-1280(82)80031-6 Google Scholar(l) Dixon, D. A.; Komornicki, A. J Phys Chem 1990, 94, 5630; (m) Ferguson, D. M.; Gould, I. R.; Glauser, W. A.; Schroeder, S.; Kollman, P. A. J Comput Chem 1992, 13, 525; (n) Leventis, N.; Hanna, S. B.; Sotiriou-Leventis, C. J Chem Ed 1997, 74, 813–814; (o) Sauers, R. R. J Chem Ed 2000, 77, 332.
- 2(a) Tribble, M. T.; Allinger, N. L. Tetrahedron 1972, 28, 2147; (b) Ouellette, R. J.; Baron, D.; Stolfo, J.; Rosenblum, A.; Weber, P. Tetrahedron 1972, 28, 2163; (c) Ouellette, R. J. J Am Chem Soc 1974, 96, 2421; (d) Lambert, J. B.; Featherman, S. I. Chem Rev 1975, 75, 611; (e) Shen, Q.; Hilderbrandt, R. L.; Mastryukov, V. S. J Mol Struct 1979, 54, 121; (f) Cho, S. G. Bull Korean Chem Soc 1995, 16, 905; (g) Arnason, I.; Thorarinsson, G. K.; Matern, E. Z Anorg Allg Chem 2000, 626, 853; (h) Frierson, M. R.; Iman, M. R.; Zalkow, V. B.; Allinger, N. L. J Org Chem 1988, 53, 5248; (i) Carleer, R.; Anteunis, M. J. Org Magn Reson 1979, 12, 673; (j) Arnason, I.; Kvaran, A.; Jonsdottir, S.; Gudnason, P. I.; Oberhammer, H. J Org Chem 2002, 67, 3827; (k) Jensen, F. R.; Bushweller, C. H. Tetrahedron Lett 1968, 2825; (l) Bushweller, C. H.; O’Neil, J. W.; Bilofsky, H. S. Tetrahedron 1972, 28, 2163.
- 3 Hehre, W. J. A Guide to Molecular Mechanics and Quantum Chemical Calculations; Wavefunction, Inc.: Irvine, CA, 2003.
- 4 Schlegel, H. B. J Comput Chem 2003, 24, 1514–1527.
- 5 Lewars, E. Computational Chemistry Introduction to the Theory and Applications of Molecular and Quantum Mechanics; Kluwer Academic: Boston, 2003.
- 6 Cramer, C. J. Essentials of Computational Chemistry Theories and Models; Wiley: New York, 2002.
- 7
Young, D.
Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems;
Wiley–Interscience:
New York,
2001.
10.1002/0471220655 Google Scholar
- 8 Jensen, F. Introduction to Computational Chemistry; Wiley: New York, 1998.
- 9 Hehre, W. J.; Radom, L.; Schleyer, P. v.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
- 10(a) Kong, J.; White, C. A.; Krylov, A. I.; Sherrill, C. D.; Adamson, R. D.; Furlani, T. R.; Lee, M. S.; Lee, A. M.; Gwaltney, S. R.; Adams, T. R.; Ochsenfeld, C.; Gilbert, A. T. B.; Kedziora, G. S.; Rassolov, V. A.; Maurice, D. R.; Nair, N.; Shao, Y.; Besley, N. A.; Maslen, P. E.; Domboski, J. P.; Daschel, H.; Zhang, W.; Korambath, P. P.; Baker, J.; Byrd, E. F. C.; Voorhis, T. V.; Oumi, M.; Hirata, S.; Hsu, C.-P.; Ishikawa, N.; Florian, J.; Warshel, A.; Johnson, B. G.; Gill, P. M. W.; Head-Gordon, M.; Pople, J. A. J Comput Chem 2000, 21, 1532; (b) The Spartan '02 Macintosh and Spartan '02 Unix programs are available from Wavefunction, Inc., 18401 Von Karman Avenue, Suite 370, Irvine, CA 92612.
- 11 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.11; Gaussian, Inc.: Pittsburgh, PA, 2001.
- 12(a) Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1996; (b) Frisch, A.; Frisch, M. J. Gaussian 98 User's Reference, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1999.
- 13(a) Ayala, P. Y.; Schlegel, H. B. J Chem Phys 1997, 107, 375; (b) Gonzalez, C.; Schlegel, H. B. J Chem Phys 1989, 90, 2154; (c) Gonzalez, C.; Schlegel, H. B. J Phys Chem 1990, 94, 5523; (d) Gonzalez, C.; Schlegel, H. B. J Phys Chem 1991, 95, 5583.
- 14 Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J Phys Chem A 2000, 104, 4811–4815.
- 15(a) Becke, A. D. J Chem Phys 1993, 98, 5648; (b) Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785.
- 16
Stephens, P. J.;
Devlin, F. J.;
Chabalowski, C. F.;
Frisch, M. J.
J Phys Chem
1994, 98,
11 623.
10.1021/j100096a001 Google Scholar
- 17 Curtiss, L. A.; Raghavachari, K.; Refern, P. C.; Pople, J. A. J Chem Phys 1997, 106, 1063.
- 18 Truhlar, D. G. Faraday Discuss Chem Soc 1998, 110, 362.
- 19 Baker, J.; Muir, M.; Andzelm, J.; Scheiner, A. ACS Symp Ser 1996, 629, 342.
- 20 Skokov, S.; Wheeler, R. A. Chem Phys Lett 1997, 271, 251.
- 21 Wiberg, K. B.; Castejon, H.; Bailey, W. F.; Ochterski, J. J Org Chem 2000, 65, 1181.
- 22 Jonas, V.; Frenking, G. Chem Phys Lett 1991, 127, 175.
- 23 Freeman, F.; Goomaroni, F. Struct Chem 2002, 13, 115.
- 24(a) Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH: New York, 2000; (b) Bauschlicher, C. W., Jr.; Partridge, H. J Chem Phys 1995, 103, 1788; (c) Rauhut, G.; Pulay, P. J Phys Chem 1995, 99, 3093; (d) Scott, A. P.; Radom, L. J Phys Chem 1996, 100, 16502; (e) Wong, M. W. Chem Phys Lett 1996, 256, 391; (f) Jaramillo, J.; Scuseria, G. E. Chem Phys Lett 1999, 312, 269; (g) Florian, J.; Johnson, B. G. J Phys Chem 1995, 99, 5899.
- 25(a) Freeman, F.; Phornvoranunt, A.; Hehre, W. J. J Phys Org Chem 1998, 11, 831; (b) Freeman, F.; Phornvoranunt, A.; Hehre, W. J. J Phys Org Chem 1999, 12, 176; (c) Freeman, F.; Hehre, W. J. J Mol Struct (Theochem) 2000, 529, 225; (d) Freeman, F.; Derek, E. Struct Chem 2003, 14, 497–510 and references cited therein.
- 26(a) Cuevas, G.; Juaristi, E. J Am Chem Soc 2002, 124, 13088 and references cited therein; (b) Alabugin, I. V. J Org Chem 2000, 65, 3910 and references cited therein; (c) Alabugin, I. V.; Zeidan, T. A. J Am Chem Soc 2002, 124, 3175 and reference cited therein; (d) Chertkov, V. A.; Sereyev, N. M. J Am Chem Soc 1977, 99, 6750–6752.
- 27 Cramer, C. J. J Mol Struct (Theochem) 1996, 370, 135–146.
- 28 Kirby, A. J. Stereoelectronic Effects; Oxford: New York, 1996.
- 29 Freeman, F.; Kasner, M. L.; Hehre, W. J. J Phys Chem A 2001, 105, 10123.
- 30 Freeman, F.; Derek, E. J Comput Chem 2003, 24, 909.
- 31(a) Wiberg, K. B.; Hadad, C. M.; LePage, T. J.; Breneman, C. M.; Frisch, M. J. J Phys Chem 1992, 96, 671; (b) Breneman, C. M.; Wiberg, K. B. J Comput Chem 1990, 11, 361; (c) Mulliken, R. S. J Chem Phys 1955, 23, 1833, 1841, 2338, 2343; (d) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J Chem Phys 1985, 83, 735–746; (b) Reed, A. E.; Weinhold, F. J Am Chem Soc 1985, 107, 919; (c) Reed, A. E.; Weinhold, F. J Am Chem Soc 1986, 108, 3586; (d) Carpenter, J. C.; Weinhold, F. J Mol Struct (Theochem) 1988, 169, 41; (e) Singh, U. C.; Kollman, P. A. J Comput Chem 1984, 5, 129; (f) Besler, B. H.; Merz, K. M., Jr.; Kollman, P. A. J Comput Chem 1990, 11, 431; (g) Gronert, S.; Glaser, R.; Streitweiser, A. J Am Chem Soc 1989, 111, 3111–3117; (h) Bader, R. W. F. Atoms in Molecules. A Quantum Theory; Clarendon Press: Oxford, 1994; (i) Geerlings, P.; De Proft, F.; Martin, J. M. L. In Recent Developments and Applications of Modern Density Functional Theory; J. M. Seminario, Ed.; Elsevier: Amsterdam, 1996; Chapter 22; (j) Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J Comput Chem 2003, 24, 1291–1304.
- 32 Freeman, F.; Le, K. T. J Phys Chem A 2003, 107, 2908–2918 and references cited therein.
- 33 Freeman, F.; Cha, C. Int J Quantum Chem 2004, 96, 443–455.
- 34 Freeman, F.; Cha, C. J Phys Org Chem 2004, 17, 32–41.
- 35(a) Pophristic, V.; Goodman, L.; Guchgait, N. J Phys Chem A 1997, 101, 4290–4297; (b) Goodman, L.; Pophristic, V. Chem Phys Lett 1996, 259, 287; (c) Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J Chem Phys 1968, 49, 2592; (d) Bader, R. F. W.; Cheeseman, J. R.; Laidig, K. E.; Wiberg, K. B.; Breneman, C. J Am Chem Soc 1990, 112, 6530; (e) Luke, B. T.; Pople, J. A.; Krogh-Jesperson, M. B.; Apeloig, Y.; Chandrasejhar, J.; Schleyer, P. v. R. J Am Chem Soc 1986, 108, 260; (f) Knight, E. T.; Allen, L. C. J Am Chem Soc 1995, 117, 4401.
- 36 Bent, H. A. Chem Rev 1961, 61, 275.
- 37 Thomas, H. D.; Chen, K.; Allinger, N. L. J Am Chem Soc 1994, 116, 5887.
- 38 Frierson, M. R.; Iman, M. R.; Zalkow, V. B.; Allinger, N. L. J Org Chem 1988, 53, 5248.
- 39(a) Allinger, N. L.; Hickey, M. J. J Am Chem Soc 1975, 97, 5167; (b) Chen, K.; Allinger, N. L. J Phys Org Chem 1997, 10, 697; (c) Allinger, N. L.; Fan, Y. J Comput Chem 1997, 18, 1827.
- 40(a) Yamamoto, S.; Nakata, M.; Fukuyama, T.; Kuchitsu, K. J Phys Chem 1985, 89, 3298; (b) Takabayashi, F.; Kambara, H.; Kuchitsu, K. Presented at the 7th Austin Symposium on Gas Phase Molecular Structure, Austin, TX, March 1978; Paper WA6; (c) Adams, W. H.; Geise, H. J.; Bartell, L. S. J Am Chem Soc 1970, 92, 5013–5019.
- 41(a)
Skancke, P. N.
J Phys Chem
1994, 98, 3154 and references cited therein;
(b)
Horner, D. A.;
Grev, R. S.;
Schaefer, H. F.
J Am Chem Soc
1992, 114,
2093;
(c)
Grev, R. S.;
Schaefer, H. F.
J Am Chem Soc
1987, 109,
6569, 6577;
(d)
Kitchen, D. B.;
Jackson, J. E.;
Allen, L. C.
J Am Chem Soc
1990, 112,
3408;
(e)
Boatz, J. A.;
Gordon, M. S.;
Hilderbrandt, R. L.
J Am Chem Soc
1988, 110,
352;
(f)
Boatz, J. A.;
Gordon, M. S.
J Phys Chem
1989, 93,
3025;
(g)
Gordon, M. S.
J Am Chem Soc
1980, 102,
7419;
(h)
Nagase, S.;
Nakano, M. J.
J Chem Soc, Chem Commun
1988, 1077;
(i)
Cremer, D.;
Gauss, J.;
Cremer, E. J.
Mol. Struct; (Theochem)
1988, 169,
531;
10.1016/0166-1280(88)80281-1 Google Scholar(j) Schoeller, W. W.; Dabisch, T. Inorg Chem 1987, 26, 1081; (k) Jones, P. R.; White, D. D. J Organomet Chem 1979, 181, 399; (l) Eckert-Maksic, M.; Kovacevic, K.; Maksic, Z. B. J Organomet Chem 1979, 1681, 295; (m) Delker, G. L.; Wang, Y.; Stucky, G. D.; Lambert, R. L., Jr.; Haas, C. K.; Seyferth, D. J Am Chem Soc 1976, 98, 1779–1784; (n) Ishikawa, M.; Matsuzawa, S.; Sugisawa, H.; Yano, F.; Kamitori, S.; Higuchi, T. J Am Chem Soc 1985, 107, 7706–7710; (o) Lukevics, E. Main Group Metal Chem 1998, 21, 649–727.
- 42(a) Morino, Y.; Kuchitsu, K.; Yokozeki, A. Bull Chem Soc Jpn 1967, 40, 1552; (b) Fitch, A. N.; Jobic, H. J Chem Soc, Chem Commun 1993, 1516–1517; (c) Chiang, J. F.; Wilcox, C. F., Jr.; Bauer, S. H. J Am Chem Soc 1968, 90, 3149–3157; (d) Ikeura, T.; Tanaka, K.; Hirota, E.; Inaba, S.-I.; Nagai, Y. Bull Chem Soc Jpn 1977, 50, 1309–1314.
- 43 Hilderbrandt, R. L.; Homer, G. D.; Boujouk, P. J Am Chem Soc 1976, 98, 7475.
- 44 Vilkov, L. V.; Mastryukov, V. S.; Baurova, Y. V.; Vdovin, V. M.; Grinberg, P. L. Proc Acad Sci SSR (Engl Trans) 1967, 177, 1146.
- 45 Pringle, W. C., Jr. J Chem Phys 1971, 54, 4979.
- 46 Lanne, J.; Lord, R. C. J Chem Phys 1968, 48, 1508.
- 47 Egawa, T.; Fukuyama, T.; Yamamoto, S.; Takabayashi, F.; Kambara, H.; Ueda, T.; Kuchitsu, K. J Chem Phys 1987, 86, 6018.
- 48(a) Durig, J. R.; Willis, J. N., Jr. J Mol Spectrosc 1969, 32, 320; (b) Durig, J. R.; Lafferty, W. J.; Kalansky, V. V. J Phys Chem 1976, 80, 1199.
- 49 Pitzer, K. S.; Donath, W. E. J Am Chem Soc 1959, 81, 3213.
- 50(a) Fuchs, B. Top Stereochem 1978, 10, 1; (b) Riddell, F. G. The Conformational Analysis of Heterocyclic Compounds; Academic: New York, 1978; (c) Riddell, F. G. In Cyclic Organonitrogen Stereodynamics; J. B. Lambert, Y. Takeuchi, Eds.; VCH: New York, 1992; p 159.