Electron-impact single ionization cross sections of helium isoelectronic systems
M. Alfaz Uddin
Department of Physics, University of Rajshahi, Rajshahi-6205, Bangladesh
Search for more papers by this authorA. K. Basak
Department of Physics, University of Rajshahi, Rajshahi-6205, Bangladesh
Search for more papers by this authorCorresponding Author
B. C. Saha
Department of Physics, Florida A&M University, Tallahassee, FL 32307
Department of Physics, University of Rajshahi, Rajshahi-6205, BangladeshSearch for more papers by this authorM. Alfaz Uddin
Department of Physics, University of Rajshahi, Rajshahi-6205, Bangladesh
Search for more papers by this authorA. K. Basak
Department of Physics, University of Rajshahi, Rajshahi-6205, Bangladesh
Search for more papers by this authorCorresponding Author
B. C. Saha
Department of Physics, Florida A&M University, Tallahassee, FL 32307
Department of Physics, University of Rajshahi, Rajshahi-6205, BangladeshSearch for more papers by this authorAbstract
The cross sections for electron-impact single ionization of helium-like targets,—Li+, B3+, C4+, N5+, O6+, Ne8+, Na9+, Fe24+, Ag45+, and U90+—are calculated using a recently propounded parameter-free relativistic binary encounter (RBEA) model, which remains valid up to the relativistic energy domain. Our RBEA results are compared with those of the Coulomb–Born (CB) approximation, distorted wave Born approximation (DWBA), relativistic two-potential DWBA (RTPD), the simple empirical model of Brenshtam et al. (BRY), and the model of Deutsch and Märk (DM) along with the available experimental data. The RBEA model, while keeping the comparable predictive power of cross sections, is found to overcome the limitations of the empirical BRY and DM models with their fitting parameters, and the quantum mechanical CB, DWBA, and RTPD theories with arduous and lengthy calculations. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004
REFERENCES
- 1
Powell, C. J. In
Electron Impact Ionization;
T. D. Märk,
D. H. Dunn, Eds.,
Springer-Verlag:
Berlin,
1985.
10.1007/978-3-7091-4028-4_6 Google Scholar
- 2 Lotz, W. Z Phys 1968, 216, 241.
- 3 Gryzinski, M. Phys Rev A 1965, 138, 336.
- 4 Deutsch, H.; Märk, T. D. Int J Mass Spect Ion Proc 1987, 79, R1.
- 5 Bethe, H. Ann Phys (Leipzig) 1930, 5, 325.
- 6 Kim, Y.-K.; Rudd, M. E. Phys Rev A 1994, 50, 3954.
- 7 Mott, N. F. Proc R Soc (London), Ser A 1930, 126, 259.
- 8 Kim, Y.-K.; Santos, J. P.; Parente, F. Phys Rev A 2000, 62, 05120.
- 9 Möller, C. Ann Phys (Leipzig) 1932, 14, 531.
- 10 Vriens, L. Proc Phys Soc (London) 1966, 89, 13.
- 11 Roy, B. N.; Rai, D. K. Phys Rev A 1973, 8, 849.
- 12 Roy, B. N.; Rai, D. K. J Phys B 1983, 16, 4677.
- 13 Kumar, A.; Roy, B. N. J Phys B 1979, 12, 3979.
- 14 Jha, L. K.; Roy, B. N. Eur Phys J D 2002, 20, 5.
- 15 Jha, L. K. Pramana 2002, 59, 515.
- 16 Kunc, J. J Phys B 1980, 13, 587.
- 17 Kunc, J. Int J Mass Spectrom 1981, 40, 43.
- 18 Deutsch, H.; Margreiter, D.; Märk, T. D. Z Phys D 1994, 29, 31.
- 19 Deutsch, H.; Becker, K.; Märk, T. D. Int J Mass Spect Ion Proc 1998, 177, 47.
- 20 Gstir, B.; Deutsch, H.; Becker, K.; Märk, T. D. J Phys B 2001, 34, 3371.
- 21 Deutsch, H.; Becker, K.; Gstir, B.; Märk, T. D. Int J Mass Spectrom 2002, 213, 5.
- 22 Uddin, M. A.; Abdullah, M. N. A.; Mahbub, M. S.; Basak, A. K. Physica Scripta 2003, 68, 192.
- 23 Attaourti, Y.; Defrance, P.; Makhaute, A.; Joachain, C. J. Physica Scripta 1991, 43, 578.
- 24 Jacubowicz, H.; Moores, D. L. J Phys B 1981, 14, 3733.
- 25 Deutsch, H.; Becker, K.; Märk, T. D. Int J Mass Spectrom 1995, 151, 207.
- 26 Younger, S. J Quant Spectrosc Radiat Transfer 1981, 26, 329.
- 27 Kuo, T.-Y.; Huang, K.-N. Phys Rev A 1995, 64, 032710.
- 28 Gadi, M. F.; Defrance, P.; Makhaute, A.; Cherkani, M. H. Physica Scripta 2001, 63, 462.
- 29 Bernshtam, V. A.; Ralchenko, Y. V.; Maron, Y. J Phys B 2000, 33, 5025.
- 30 Sobelman, I. I.; Vainshtein, I. A.; Yukuv, E. A. Excitation of Atoms and Broadening of Spectral Lines, 2nd ed.; Springer: Berlin, 1979.
- 31 Catlow, G.; McDowell, M. R. C. Proc Phys Soc (London) 1967, 92, 875.
- 32
Clementi, E.;
Roetti, C.
At Data Nucl Data Tables
1974, 14,
217.
10.1016/S0092-640X(74)80016-1 Google Scholar
- 33 Amusia, Y. M.; Chernysheva, L. V. Computations of Atomic Processes (a handbook of ATOM programs), IOP Publishing: London, 1997.
- 34 Deutsch, H.; Becker, K.; Matt, S.; Märk, T. D. Int J Mass Spectrom 2000, 197, 37.
- 35 Rejoub, R.; Lindsay, B. G.; Stebbings, R. F. Phys Rev A 2002, 65, 042713.
- 36 Peart, B.; Dolder, K. T. J Phys B 1968, 1, 872.
- 37 Lineberger, W. C.; Hooper, J. W.; McDaniel, E. W. Phys Rev 1966, 141, 151.
- 38 Moores, D. L.; Nussbaumer, H. J Phys B 1970, 3, 161.
- 39 Crandall, D. H.; Phaneuf, R. A.; Hasselquist, B. E.; Gregory, D. C. J Phys B 1979, L249.
- 40 Rachafi, S.; Zambra, M.; Hui, Z.; Duponchelle, M.; Jureta, J.; Defrance, P. Physica Scripta 1989, 28, 12.
- 41 Donets, E. D.; Ovsyannikov, V. P. Sov Phys JEEP 1981, 53, 466.
- 42 Defrance, P.; Chantrene, S.; Brouillard, F.; Rachafi, S.; Belic, D.; Jureta, J.; Gregory, D. Nucl Instr Meth 1985, B9, 400.
- 43 Duponchelle, M.; Khoulid, M.; Onalim, E. M.; Zhany, H.; Defrance, P. J Phys B 1997, 30, 729.
- 44 Fontes, C. J.; Sampson, D. H.; Zhang, H. L. Phys Rev. A 1999, 59, 1329.
- 45 Khare, S. P.; Wadehra, J. M. Phys Lett A 1995, 198, 212.
- 46 Long, X.; Liu, M.; Ho, F.; Peng, X. At Data Nucl Data Tables 1990, 45, 353.
- 47 Claytor, N.; Feinberg, B.; Gould, H; Bemis, C. E.; del Campo, J. G.; Luderman, C. A.; Vane, C. R. Phys Rev Lett 1988, 61, 2081.
- 48 Marrs, R. E.; Elliot, S. R.; Knapp, D. A. Phys Rev Lett 1994, 72, 4082.
- 49 Younger, S. M. Phys Rev A 1980, 22, 1425.
- 50 Pindzola, S. M.; Moores, D. L.; Griffins, D. C. Phys Rev A 1989, 40, 4941.
- 51 Zhang, H. L.; Sampson, D. H. Phys Rev A 1990, 42, 5378.
- 52 Uddin, M. A.; Basak, A. K. Physica Scripta 2003, 67, 112.
- 53 Moores, D. L.; Reed, K. J. Phys Rev A 1995, 51, R9.