Strain Engineering and Electric Field Tunable Electronic Properties of Janus MoSSe/WX2 (X = S, Se) van der Waals Heterostructures
Chen Yu
School of Electronic Science and Engineering, Center for Public Security Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China
Search for more papers by this authorCorresponding Author
Zhiguo Wang
School of Electronic Science and Engineering, Center for Public Security Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China
Search for more papers by this authorChen Yu
School of Electronic Science and Engineering, Center for Public Security Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China
Search for more papers by this authorCorresponding Author
Zhiguo Wang
School of Electronic Science and Engineering, Center for Public Security Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P.R. China
Search for more papers by this authorAbstract
Using first-principles calculations, the electronic properties of Janus MoSSe/WX2 (X = S, Se) van der Waals (vdW) heterostructures are investigated. The results show that MoSSe/WS2 and MoSSe/WSe2 heterostructures have type-II and type-I band alignments with indirect band gaps of 1.50 and 1.52 eV, respectively. The electronic properties of MoSSe/WX2 vdW heterostructures can be tuned by an electric field and mechanical strain. A band alignment transition occurrs with the applied electric field, and the band gap changes. A type-II to type-I band alignment transition occurrs in the Janus MoSSe/WX2 heterostructure with a large strain. The band characteristics of MoSSe/WSe2 are sensitive to the electric field and mechanical strain. A positive electric field (from the bottom WX2 to the Janus MoSSe) induces an indirect-to-direct band gap transition in the MoSSe/WSe2 heterostructure. This work suggests that the Janus MoSSe/WX2 heterostructures have tunable electronic properties, making them promising candidates for nanoscale device applications.
Conflicts of Interest
The authors declare no conflict of interest.
References
- 1 K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett. 2010, 105, 136805.
- 2 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang, Nano Lett. 2010, 10, 1271.
- 3 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nature Nanotechnol. 2012, 7, 699.
- 4 W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, J. D. Lee, Phys. Rev. B 2012, 85, 033305.
- 5 P. Johari, V. B. Shenoy, ACS Nano 2012, 6, 5449.
- 6 H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong, Z. J. Wong, Z. Ye, Y. Ye, X. Yin, X. Zhang, Nature Nanotechnol. 2014, 10, 151.
- 7 K. A. N. Duerloo, M. T. Ong, E. J. Reed, J. Phys. Chem. Lett. 2012, 3, 2871.
- 8 J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568.
- 9 Z. Y. Zeng, T. Sun, J. X. Zhu, X. Huang, Z. Y. Yin, G. Lu, Z. X. Fan, Q. Y. Yan, H. H. Hng, H. Zhang, Angew. Chem. Int. Ed. 2012, 51, 9052.
- 10 Z. Y. Zeng, Z. Y. Yin, X. Huang, H. Li, Q. Y. He, G. Lu, F. Boey, H. Zhang, Angew. Chem. Int. Ed. 2011, 50, 11093.
- 11 A. Nourbakhsh, A. Zubair, R. N. Sajjad, A. Tavakkoli, K. G, W. Chen, S. Fang, X. Ling, J. Kong, M. S. Dresselhaus, E. Kaxiras, K. K. Berggren, D. Antoniadis, T. Palacios, Nano Lett. 2016, 16, 7798.
- 12 J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Q. Er, W. B. Chen, H. Guo, Z. H. Jin, V. B. Shenoy, L. Shi, J. Lou, ACS Nano 2017, 11, 8192.
- 13 A. Y. Lu, H. Y. Zhu, J. Xiao, C. P. Chuu, Y. M. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. M. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. D. Yang, D. A. Muller, M. Y. Chou, X. Zhang, L. J. Li, Nat. Nanotechnol. 2017, 12, 744.
- 14 L. Dong, J. Lou, V. B. Shenoy, ACS Nano 2017, 11, 8242.
- 15 W. Shi, K. Fan, Z. Wang, Phys. Chem. Chem. Phys. 2018, 20, 29423.
- 16 Y. Ji, M. Yang, H. Lin, T. Hou, L. Wang, Y. Li, S. Lee, J. Phys. Chem. C 2018, 122, 3123.
- 17 R. Peng, Y. Ma, S. Zhang, B. Huang, Y. Dai, J. Phys. Chem. Lett. 2018, 9, 3612.
- 18 Y. Liang, J. Li, H. Jin, B. Huang, Y. Dai, J. Phys. Chem. Lett. 2018, 9, 2797.
- 19 Z. Guan, S. Ni, S. Hu, J. Phys. Chem. C 2018, 122, 6209.
- 20 C. Jin, X. Tang, X. Tan, S. C. Smith, Y. Dai, L. Kou, J. Mater. Chem. A 2019, 7, 1099.
- 21 S. Tao, B. Xu, J. Shi, S. Zhong, X. Lei, G. Liu, M. Wu, J. Phys. Chem. C 2019, 123, 9059.
- 22 M. Meng, T. H. Li, S. F. Li, K. L. Liu, J. Phys. D, Appl. Phys. 2018, 51, 105004.
- 23 W. Shi, G. Li, Z. Wang, J. Phys. Chem. C 2019, 123, 12261.
- 24 J. Wang, H. Shu, T. Zhao, P. Liang, N. Wang, D. Cao, X. Chen, Phys. Chem. Chem. Phys. 2018, 20, 18571.
- 25 J. He, S. Li, Comput. Mater. Sci. 2018, 152, 151.
- 26 L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, T. Palacios, Nano Lett. 2014, 14, 3055.
- 27 J. Shim, H. S. Kim, Y. S. Shim, D. H. Kang, H. Y. Park, J. Lee, J. Jeon, S. J. Jung, Y. J. Song, W. S. Jung, J. Lee, S. Park, J. Kim, S. Lee, Y. H. Kim, J. H. Park, Adv. Mater. 2016, 28, 5293.
- 28 A. Azizi, S. Eichfeld, G. Geschwind, K. Zhang, B. Jiang, D. Mukherjee, L. Hossain, A. F. Piasecki, B. Kabius, J. A. Robinson, N. Alem, ACS Nano 2015, 9, 4882.
- 29 K. Kośmider, J. Fernández-Rossier, Phys. Rev. B 2013, 87, 075451.
- 30 H. P. Komsa, A. V. Krasheninnikov, Phys. Rev. B 2013, 88, 085318.
- 31 T. Roy, M. Tosun, X. Cao, H. Fang, D. H. Lien, P. Zhao, Y. Z. Chen, Y. L. Chueh, J. Guo, A. Javey, ACS Nano 2015, 9, 2071.
- 32 H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, A. Javey, Proc. Natl. Acad. Sci. USA 2014, 111, 6198.
- 33 F. Ceballos, M. Z. Bellus, H. Y. Chiu, H. Zhao, Nanoscale 2015, 7, 17523.
- 34 E. M. Alexeev, A. Catanzaro, O. V. Skrypka, P. K. Nayak, S. Ahn, S. Pak, J. Lee, J. I. Sohn, K. S. Novoselov, H. S. Shin, A. I. Tartakovskii, Nano Lett. 2017, 17, 5342.
- 35 L. Huang, N. Huo, Y. Li, H. Chen, J. Yang, Z. Wei, J. Li, S. Li, J. Phys. Chem. Lett. 2015, 6, 2483.
- 36 A. K. Geim, I. V. Grigorieva, Nature 2013, 499, 419.
- 37 L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, Y. Yang, Energy Environ. Sci. 2018, 11, 106.
- 38 J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, X. Xu, Nano Lett. 2017, 17, 638.
- 39 A. Dankert, S. P. Dash, Nature Commun. 2017, 8, 16093.
- 40 Z. Wang, J. Mater. Chem. C 2018, 6, 13000.
- 41 C. Yu, X. Cheng, C. Wang, Z. Wang, Physica E 2019, 110, 148.
- 42 Y. Wang, W. Wei, B. Huang, Y. Dai, Phys. Chem. Chem. Phys. 2019, 21, 70.
- 43 K. D. Pham, N. N. Hieu, H. V. Phuc, I. A. Fedorov, C. A. Duque, B. Amin, C. V. Nguyen, Appl. Phys. Lett. 2018, 113, 171605.
- 44 H. U. Din, M. Idrees, G. Rehman, C. V. Nguyen, L. Y. Gan, I. Ahmad, M. Maqbool, B. Amin, Phys. Chem. Chem. Phys. 2018, 20, 24168.
- 45 S. J. Zhang, C. W. Zhang, S. F. Zhang, W. X. Ji, P. Li, P. P. Wang, S. S. Li, S. S. Yan, Phys. Rev. B 2017, 96, 205433.
- 46 S. A. Khan, B. Amin, L. Gan, I. Ahmad, Phys. Chem. Chem. Phys. 2017, 19, 14738.
- 47 P. T. T. Le, N. N. Hieu, L. M. Bui, H. V. Phuc, B. D. Hoi, B. Amin, C. V. Nguyen, Phys. Chem. Chem. Phys. 2018, 20, 27856.
- 48 Y. Wang, W. Ji, C. Zhang, P. Li, S. Zhang, P. Wang, S. Li, S. Yan, Appl. Phys. Lett. 2017, 110, 213101.
- 49 S. Li, W. Ji, S. Hu, C. Zhang, S. Yan, ACS Appl. Mater. Interfaces 2017, 9, 41443.
- 50 M. Zhang, C. Zhang, P. Wang, S. Li, Nanoscale 2018, 10, 20226.
- 51 W. Zhou, J. Chen, Z. Yang, J. Liu, F. Ouyang, Phys. Rev. B 2019, 99, 075160.
- 52 Q. Liu, L. Li, Y. Li, Z. Gao, Z. Chen, J. Lu, J. Phys. Chem. C 2012, 116, 21556.
- 53 Y. Li, J. Wang, B. Zhou, F. Wang, Y. Miao, J. Wei, B. Zhang, K. Zhang, Phys. Chem. Chem. Phys. 2018, 20, 24109.
- 54 M. Sun, J. P. Chou, Q. Ren, Y. Zhao, J. Yu, W. Tang, Appl. Phys. Lett. 2017, 110, 173105.
- 55 H. U. Din, M. Idrees, T. A. Alrebdi, C. V. Nguyen, B. Amin, Comput. Mater. Sci. 2019, 164, 166.
- 56 M. Idrees, H. U. Din, S. A. Khan, I. Ahmad, L. Gan, C. V. Nguyen, B. Amin, J. Appl. Phys. 2019, 125, 094301.
- 57 A. Ramasubramaniam, D. Naveh, E. Towe, Phys. Rev. B 2011, 84, 205325.
- 58 Q. Peng, C. Si, J. Zhou, Z. Sun, Appl. Surf. Sci. 2019, 480, 199.
- 59 N. X. Ca, N. T. Hien, P. M. Tan, T. L. Phan, L. D. Thanh, P. V. Do, N. Q. Bau, V. T. K. Lien, H. T. Van, J. Alloys Compd. 2019, 791, 144.
- 60 N. Gheshlaghi, H. S. Pisheh, H. Ünlü, Superlattice Microstruct. 2017, 111, 156.
- 61 Q. Peng, Z. Wang, B. Sa, B. Wu, Z. Sun, Sci. Rep. 2016, 6, 31994.
- 62 S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, Z. L. Wang, ACS Nano 2015, 9, 6419.
- 63 M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, J. H. He, ACS Nano 2014, 8, 8317.
- 64 Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, P. D. Ye, ACS Nano 2014, 8, 8292.
- 65 P. K. Srivastava, Y. Hassan, Y. Gebredingle, J. Jung, B. Kang, W. J. Yoo, B. Singh, C. Lee, ACS Appl. Mater. Interfaces 2019, 11, 8266.
- 66 R. Yan, S. Fathipour, Y. Han, B. Song, S. Xiao, M. Li, N. Ma, V. Protasenko, D. A. Muller, D. Jena, H. G. Xing, Nano Lett. 2015, 15, 5791.
- 67 C. Xia, J. Du, M. Li, X. Li, X. Zhao, T. Wang, J. Li, Phys. Rev. Appl. 2018, 10, 054064.
- 68 J. Shim, S. Oh, D. H. Kang, S. H. Jo, M. H. Ali, W. Y. Choi, K. Heo, J. Jeon, S. Lee, M. Kim, Y. J. Song, J. H. Park, Nat. Commun. 2016, 7, 13413.
- 69 X. He, H. Li, Z. Zhu, Z. Dai, Y. Yang, P. Yang, Q. Zhang, P. Li, U. Schwingenschlogl, X. Zhang, Appl. Phys. Lett. 2016, 109, 173105.
- 70 Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, Nature 2009, 459, 820.
- 71 H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, K. I. Bolotin, Nano Lett. 2013, 13, 3626.
- 72 Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, Z. X. Shen, ACS Nano 2008, 2, 2301.
- 73 G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15.
- 74 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 75 G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 76 J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.
- 77 J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2006, 124, 219906.
- 78 H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.