The Electronic Structure and Optical Properties of Two-Dimensional BiOX–YO3 (X = Cl, Br, and I; Y = Mo, W) Heterostructures
Corresponding Author
Zhen-Kun Tang
College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, 421002 P. R. China
Search for more papers by this authorLin-Tao Luo
College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, 421002 P. R. China
Search for more papers by this authorXiao-Hui Deng
College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, 421002 P. R. China
Search for more papers by this authorDeng-Yu Zhang
College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, 421002 P. R. China
Search for more papers by this authorCorresponding Author
Mingyang Chen
Beijing Computational Science Research Center, Beijing, 100193 P. R. China
Search for more papers by this authorCorresponding Author
Zhen-Kun Tang
College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, 421002 P. R. China
Search for more papers by this authorLin-Tao Luo
College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, 421002 P. R. China
Search for more papers by this authorXiao-Hui Deng
College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, 421002 P. R. China
Search for more papers by this authorDeng-Yu Zhang
College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, 421002 P. R. China
Search for more papers by this authorCorresponding Author
Mingyang Chen
Beijing Computational Science Research Center, Beijing, 100193 P. R. China
Search for more papers by this authorAbstract
Semiconductor photocatalysts have received a lot of attention because of their wide range of applications in solving energy and environmental problems. In this work, the electronic structure and optical properties of two-dimensional (2D) heterostructures of bismuth oxyhalides (BiOX, X = Cl, Br, I) and transition-metal oxides (YO3, Y = Mo, W) are studied by density functional theory. The results reveal that the 2D BiOX–YO3 heterostructures are semiconductors with band gaps of 0–1.41 eV. Electronic structure analyses indicate that the valence band maximum (VBM) and conduction band minimum (CBM) of BiOX–YO3 are spatially separated and reside in the BiOX and YO3 layers, respectively. The electron effective masses of BiOI–YO3 (Y = Mo, W) heterostructures, especially BiOI–WO3, are significantly lower than those of BiOI and YO3. BiOI–YO3 (Y = Mo, W) heterostructures exhibit a good absorption in the visible light region. The enhanced optoelectronic properties of BiOI–YO3 are found to be related to the comparably large lattice mismatches between BiOI and YO3. The ultra-low electron effective mass and good visible absorption of the BiOI–WO3 heterostructure make it a promising candidate for the high-efficient photocatalyts for water-splitting.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 A. Fujishima, K. Honda, Nature 1972, 238, 37.
- 2 H. Ahmad, S. K. Kamarudin, L. J. Minggu, M. Kassim, Renew. Sust. Energy Rev. 2015, 43, 599.
- 3 A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.
- 4 J. H. Park, S. Kim, A. J. Bard, Nano Lett. 2006, 6, 24.
- 5 F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam, R. van de Krol, Nat. Commun. 2013, 4, 2195.
- 6 H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 2014, 43, 5234.
- 7 S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, J. Tang, Energy Environ. Sci. 2015, 8, 731.
- 8 W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Small 2013, 9, 140.
- 9 A. Dutta, S. K. Dutta, S. K. Mehetor, I. Mondal, U. Pal, N. Pradhan, Chem. Mater. 2016, 28, 1872.
- 10 N. Liang, J. Zai, M. Xu, Q. Zhu, X. Wei, X. Qian, J. Mater. Chem. A 2014, 2, 4208.
- 11 Q. Tang, Z. Zhou, Prog. Mater. Sci. 2013, 58, 1244.
- 12 A. K. Geim, I. V. Grigorieva, Nature 2013, 499, 419.
- 13 C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, P. Kim, Nature Nanotechnol. 2014, 9, 676.
- 14 M. Z. Rahman, C. W. Kwong, K. Davey, S. Z. Qiao, Energy Environ. Sci. 2016, 9, 709.
- 15
Z.-K. Tang,
C.-J. Tong,
W. Geng,
D.-Y. Zhang,
L.-M. Liu,
2D Mater.
2015,
2, 034014.
10.1088/2053-1583/2/3/034014 Google Scholar
- 16 H.-F. Lin, L.-M. Liu, J. Zhao, J. Mater. Chem. C 2017, 5, 2291.
- 17 M. Sun, J.-P. Chou, J. Yu, W. Tang, J. Mater. Chem. C 2017, 5, 10383.
- 18 J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B. J. LeRoy, Nat. Mater. 2011, 10, 282.
- 19 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722.
- 20 W. Yang, G. Chen, Z. Shi, C.-C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, G. Zhang, Nat. Mater. 2013, 12, 792.
- 21 J. Zhang, J. Wang, P. Chen, Y. Sun, S. Wu, Z. Jia, X. Lu, H. Yu, W. Chen, J. Zhu, G. Xie, R. Yang, D. Shi, X. Xu, J. Xiang, K. Liu, G. Zhang, Adv. Mater. 2016, 28, 1950.
- 22 K. Wang, G. Zhang, J. Li, Y. Li, X. Wu, ACS Appl. Mater. Interfaces 2017, 9, 43704.
- 23 K. Wang, X. Wu, G. Zhang, J. Li, Y. Li, ACS Sustain. Chem. Eng. 2018, 6, 6682.
- 24 K. Wang, Y. Li, G. Zhang, J. Li, X. Wu, Appl. Catal. B – Environ. 2019, 240, 39.
- 25 K. Kośmider, J. Fernández-Rossier, Phys. Rev. B 2013, 87, 075451.
- 26 Z.-K. Tang, W.-J. Yin, Z. Le, B. Wen, D.-Y. Zhang, L.-M. Liu, W.-M. Lau, Sci. Rep. 2016, 6, 32764.
- 27 A. Ramasubramaniam, D. Naveh, E. Towe, Nano Lett. 2011, 11, 1070.
- 28 H. Terrones, F. López-Urías, M. Terrones, Sci. Rep. 2013, 3, 1549.
- 29 Z. Y. Zhang, M. S. Si, S. L. Peng, F. Zhang, Y. H. Wang, D. S. Xue, J. Solid State Chem. 2015, 231, 64.
- 30 J. Kang, J. Li, S.-S. Li, J.-B. Xia, L.-W. Wang, Nano Lett. 2013, 13, 5485.
- 31 Z. Li, X. Yan, Z. Tang, Z. Huo, G. Li, L. Jiao, L.-M. Liu, M. Zhang, J. Luo, J. Zhu, Sci. Rep. 2017, 7, 8323.
- 32 J. Liao, B. Sa, J. Zhou, R. Ahuja, Z. Sun, J. Phys. Chem. C 2014, 118, 17594.
- 33 C.-F. Fu, Q. Luo, X. Li, J. Yang, J. Mater. Chem. A 2016, 4, 18892.
- 34 H. Huang, S. Tu, C. Zeng, T. Zhang, A. H. Reshak, Y. Zhang, Angew. Chem. Int. Ed. 2017, 56, 11860.
- 35 H. Yu, J. Li, Y. Zhang, S. Yang, K. Han, F. Dong, T. Ma, H. Huang, Angew. Chem. Int. Ed. 2019, 58, 3880.
- 36 L. Hao, L. Kang, H. Huang, L. Ye, K. Han, S. Yang, H. Yu, M. Batmunkh, Y. Zhang, T. Ma, Adv. Mater. 2019, 31, 1900546.
- 37 M. Li S. Yu, H. Huang, X. Li, Y. Feng, C. Wang, Y. Wang, T. Ma, L. Guo, Y. Zhang, Angew. Chem. Int. Ed. 2019, https://doi.org/10.1002/anie.201904921
- 38 J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Chem. Mater. 2007, 19, 366.
- 39 X. Zhang, Z. Ai, F. Jia, L. Zhang, J. Phys. Chem. C 2008, 112, 747.
- 40 H. An, Y. Du, T. Wang, C. Wang, W. Hao, J. Zhang, Rare Met. 2008, 27, 243.
- 41 X. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G. Ji, S. Deng, G. Yu, Catal. Commun. 2010, 11, 460.
- 42 H. Cheng, B. Huang, Y. Dai, Nanoscale 2014, 6, 2009.
- 43 X. Zhang, B. Li, J. Wang, Y. Yuan, Q. Zhang, Z. Gao, L.-M. Liu, L. Chen, Phys. Chem. Chem. Phys. 2014, 16, 25854.
- 44 I. Shakir, J. H. Choi, M. Shahid, Z. Ali, D. J. Kang, J. Mater. Chem. 2012, 22, 20549.
- 45 A. Chithambararaj, N. S. Sanjini, S. Velmathi, A. Chandra Bose, Phys. Chem. Chem. Phys. 2013, 15, 14761.
- 46 N. Oka, A. Murata, S.-i. Nakamura, J. Jia, Y. Iwabuchi, H. Kotsubo, Y. Shigesato, APL Mater. 2015, 3, 104407.
- 47 F. Wang, C. Di Valentin, G. Pacchioni, J. Phys. Chem. C 2012, 116, 8901.
- 48 J. Luo, X. Zhou, L. Ma, X. Xu, J. Mol. Catal. A, Chem. 2015, 410, 168.
- 49 S. Shamaila, A. K. L. Sajjad, F. Chen, J. Zhang, J. Colloid Interface Sci. 2011, 356, 465.
- 50 G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 51 G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 52 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 53 J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.
- 54 J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2006, 124, 219906.
- 55 Y. Zheng, G. Chen, Y. Yu, Y. Zhou, F. He, Appl. Surf. Sci. 2016, 362, 182.
- 56 S. Adhikari, K. Sarath Chandra, D.-H. Kim, G. Madras, D. Sarkar, Adv. Powder Technol. 2018, 29, 1591.
- 57 Z.-K. Tang, Y.-N. Zhang, D.-Y. Zhang, W.-M. Lau, L.-M. Liu, Sci. Rep. 2014, 4, 7007.
- 58 F. Opoku, K. K. Govender, C. G. C. E. van Sittert, P. P. Govender, Comput. Mater. Sci. 2017, 138, 462.
- 59 C.-J. Tong, H. Zhang, Y.-N. Zhang, H. Liu, L.-M. Liu, J. Mater. Chem. A 2014, 2, 17971.
- 60 Y.-F. Li, Z.-P. Liu, J. Am. Chem. Soc. 2011, 133, 15743.
- 61 J. Li, X. Wu, W. Pan, G. Zhang, H. Chen, Angew. Chem. Int. Ed. 2018, 57, 491.
- 62 X. Han, H. M. Stewart, S. A. Shevlin, C. R. A. Catlow, Z. X. Guo, Nano Lett. 2014, 14, 4607.
- 63 J. Liu, B. Cheng, Appl. Surf. Sci. 2018, 430, 348.
- 64 R. J. Elliott, Phys. Rev. 1957, 108, 1384.
- 65 J. He, A. Borisevich, S. V. Kalinin, S. J. Pennycook, S. T. Pantelides, Phys. Rev. Lett. 2010, 105, 227203.
- 66 X. Liu, M. C. Hersam, Adv. Mater. 2018, 30, 1801586.