A Simple Model for Stretched Exponential Relaxation in Three-Level Jumping Process
Corresponding Author
Ekrem Aydiner
Department of Physics, Faculty of Science, İstanbul University, Tr-34134 İstanbul, Turkey
Search for more papers by this authorCorresponding Author
Ekrem Aydiner
Department of Physics, Faculty of Science, İstanbul University, Tr-34134 İstanbul, Turkey
Search for more papers by this authorAbstract
In this study, operator formalism is briefly introduced which is used to model Debye-type relaxation with three-level jumping based on Markovian framework. The author generalizes this formalism to the non-Markovian process to model the non-exponential relaxation and internal friction of real bcc metals or systems like Snoek-type. By using this formalism, stretched exponential relaxation and the frequency and temperature dependence of internal friction depending upon β parameter are obtained. For β = 1, it is shown that the relaxation is exponential which obeys Debye law, and the frequency and temperature dependence of internal peak are represented by a single Debye peak. However, for 0 < β < 1 the author shows that relaxation is given by stretched exponential form, and the internal friction deviates from single Debye peak. It is concluded that β represents the memory, aging, and coupling effects of stochastic dynamics in complex materials.
Conflict of Interest
The author declares no conflict of interest.
References
- 1
R. Kohlrausch,
Ann. Phys. Chemie (Leipzig)
1847,
12, 353.
10.1002/andp.18471481102 Google Scholar
- 2 G. Williams, D. C. Watts, Trans. Faraday Soc. 1970, 66, 80.
- 3 V. Cannella, J. A. Mydosh, Phys. Rev. B 1972, 6, 4220.
- 4 S. Kirkpatrick, D. Sherington, Phys. Rev. Lett. B 1975, 17, 1792.
- 5 A. K. Jonscher, Nature 1977, 267, 673.
- 6
R. Richert,
A. Blumen,
Disorder Effects on Relaxational Processes (Eds. R. Richert, A. Blumen),
Springer,
Berlin, Heidelberg
1994.
10.1007/978-3-642-78576-4 Google Scholar
- 7 J. C. Phillips, Rep. Prog. Phys. 1996, 59, 1133.
- 8 M. Potuzak, R. C. Welch, J. C. Mauroa, J. Chem. Phys. 2011, 135, 214502.
- 9 P. Grassberger, I. Procaccia, J. Chem. Phys. 1982, 77, 6281.
- 10 J. H. Wu, Q. Jia, Sci. Rep. 2016, 6, 20506.
- 11 P. Debye, Polar Molecules. Chemical Catalogue Co, New York 1929.
- 12 J. L. Snoek, Physica 1941, 8, 711.
- 13 C. Zener, Elasticity and Anelasticity of Metals. University of Chicago Press, Chicago 1948.
- 14 A. S. Nowick, B. S. Berry, Anelastic Relaxation in Crystalline Solids. Academic Press, New York 1972.
- 15 M. Weller, J. Phys. Colloques 1985, 46, C10-7.
- 16 M. Weller, J. Phys. IV (France) 1995, 5, C7.
- 17 M. Weller, Mater. Sci. Forum 2001, 366-368, 35.
- 18 M. Weller, Mater. Sci. Eng. A 2006, 442, 21.
- 19 G. Haneczok, Interaction of Interstitial Foreign Atoms Dissolved in bcc Metals. Silesian University Press, Katowice 1966.
- 20 F. Yin, L. Yu, D. Ping, S. Iwasaki, J. Appl. Phys. 2008, 104, 113507.
- 21 Z. C. Szkopiak, J. T. Smith, J. Phys. D: Appl. Phys. 1975, 8, 1273.
- 22 N. P. Kushnareva, S. E. Snejko, I. P. Yarosh, Acta. Metall. Mater. 1995, 43, 4393.
- 23 L. Yu, F. Yin, D. Ping, Phys. Rev. B 2007, 75, 174105.
- 24 L. B. Magalas, J. Phys. IV (France) 1996, 06, C8.
- 25 S. Xiao, F. Yin, W. Hu, Phys. Status Solidi B 2015, 252, 1382.
- 26 Y. Wang, M. Gu, L. Sun, K. L. Ngai, Phys. Rev. D 1994, 50, 3525.
- 27 K. L. Ngai, C. T. White, Phys. Rev. B 1979, 20, 2475.
- 28 K. L. Ngai, Disorder Effects on Relaxational Processes (Eds. R. Richert, A. Blumen), Springer, Berlin, Heidelberg 1994.
- 29 M. Weller, G. Haneczok, J. Diehl, Phys. Status Solidi B 1992, 172, 145.
- 30 G. Haneczok, M. Weller, J. Diehl, Phys. Status Solidi B 1992, 172, 557.
- 31 G. Haneczok, Philos. Mag. A 1998, 78, 845.
- 32 Y. Wang, M. Gu, L. Sun, J. Phys.: Condens. Matter 1989, 1, 10039.
- 33 J. Ren, L. Yu, Y. Liu, H. Li, Z. Ma, J. Wu, Materials (Basel) 2018, 11, 1948.
- 34 L. B. Magalas, Solid State Phenomena 2003, 89, 1.
- 35 S. Garruchet, M. Perez, Comput. Mater. Sci. 2008, 43, 286.
- 36 L. B. Magalas, B. M. Darinskii, Solid State Phenomena 2006, 115, 1.
- 37 T. C. Niemeyer, C. R. Grandini, O. Florencio, Mater. Sci. Eng. A 2005, 396, 285289.
- 38 S. A. Golovin, I. S. Golovin, Met. Sci. Heat Treat. 2012, 54, 208.
- 39 C. Liu, E. Pineda, D. Crespo, Metals 2015, 5, 1073.
- 40 S. Dattagupta, Relaxation Phenomena in Condensed Matter Physics. Academic Press, Orlando 1987.
- 41 E. W. Montroll, G. H. Weiss, J. Math. Phys. 1965, 6, 167.
- 42 H. Scher, M. Lax, Phys. Rev. B 1973, 7, 4491.
- 43 R. Metzler, J. Klafter, Phys. Rep. 2000, 339, 1.
- 44 R. Metzler, J. Klafter, J. Non-Cryst. Solids 2002, 305, 81.
- 45 M. Riesz, Acta Mathematica 1949, 81, 1222.
- 46 M. Caputo, Geophys. J. R. Astron. Soc. 1967, 13, 529539.
- 47 K. B. Oldham, J. Spanier, The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. Academic Press, New York 1974.
- 48
A. A. Kilbas,
H. M. Srivastava,
J. J. Trujiilo,
Theory and Applications of Fractional Differential Equations.
Elsevier,
Amsterdam, Netherlands
2006.
10.1016/S0304-0208(06)80001-0 Google Scholar
- 49 E. W. Montroll, J. T. Bendler, J. Stat. Phys. 1984, 34, 129.
- 50 F. Alvarez, A. Alegra, J. Colmenero, Phys. Rev. B 1993, 47, 125.
- 51 F. Alvarez, A. Alegra, J. Colmenero, Phys. Rev. B 1991, 44, 7306.
- 52 K. S. Cole, R. H. Cole, J. Chem. Phys 1941, 9, 341.
- 53 K. Weron, M. Kotulski, Physica A 1996, 232, 180.
- 54 R. Hilfer, Phys. Rev. E 2002, 65, 061510.
- 55 R. Hilfer, J. Phys.: Condens. Matter 2002, 14, 2297.
- 56 Y. P. Kalmykov, W. T. Coffey, D. S. F. Crothers, S. V. Titov, Phys. Rev. E 2004, 70, 041103.
- 57 R. Garrappa, F. Mainardi, M. Guido, Fract. Calc. Appl. Anal. 2016, 19, 1105.