Thermodynamic Properties of Wx(TaTiVCr)1−x High-Entropy(-Like) Alloy and Influence of Tungsten Content
Xiao-Jing Yao
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Search for more papers by this authorLi Ma
Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Guangxi Teachers Education University, Nanning 530023, China
Search for more papers by this authorShan Jiang
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Search for more papers by this authorDong-Ming Luo
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Search for more papers by this authorGuo-Yong Gan
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Search for more papers by this authorWei Wang
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Search for more papers by this authorCorresponding Author
Bi-Yu Tang
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Search for more papers by this authorXiao-Jing Yao
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Search for more papers by this authorLi Ma
Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Guangxi Teachers Education University, Nanning 530023, China
Search for more papers by this authorShan Jiang
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Search for more papers by this authorDong-Ming Luo
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Search for more papers by this authorGuo-Yong Gan
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Search for more papers by this authorWei Wang
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Search for more papers by this authorCorresponding Author
Bi-Yu Tang
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Search for more papers by this authorAbstract
Based on quasi-harmonic Debye–Grüneisen model and thermal equation of state, thermodynamic properties of high-entropy(-like) alloy Wx(TaTiVCr)1−x (x = 0.30–0.67) phases have been studied by first principles density functional theory calculations combined with special quasi-random structure (SQS) model, and the influence of W content is predominantly emphasized. Present investigations show that bulk modulus B of Wx(TaTiVCr)1−x declines with increasing temperature, and the softening tendency is similar for various W content, although the strength of Wx(TaTiVCr)1−x demonstrates overall lowering with simultaneous alloying of Ta, Ti, V, and Cr. The thermal expansion coefficient of Wx(TaTiVCr)1−x rises nonlinearly with increasing temperature, and the increase rate is lowered with more W content. The temperature dependence of heat capacity at constant volume CV and constant pressure CP of Wx(TaTiVCr)1−x also exhibits analog behavior at various W content. Thermodynamic entropy of Wx(TaTiVCr)1−x increases dramatically with temperature, and the contribution from electronic entropy, configuration, and vibrational entropy is discussed in detail. In addition, the Debye-temperature and Grüneisen parameter are also analyzed. The present results are very valuable for optimizing the composition and comprehensive properties of W-containing high-entropy(-like) alloys.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater. 2004, 6, 299.
- 2 O. Senkov, S. Senkova, C. Woodward, D. Miracle, Acta Mater. 2013, 61, 1545.
- 3 O. Senkov, S. Senkova, D. Miracle, C. Woodward, Mater. Sci. Eng. A 2013, 565, 51.
- 4
X. Yang,
Y. Zhang,
P. Liaw,
Proc. Eng.
2012,
36, 292.
10.1016/j.proeng.2012.03.043 Google Scholar
- 5 O. Senkov, C. Woodward, Mater. Sci. Eng. A 2011, 529, 311.
- 6 E. Fazakas, V. Zadorozhnyy, L. Varga, A. Inoue, D. Louzguine-Luzgin, F. Tian, L. Vitos, Int. J. Refract. Met. Hard Mater. 2014, 47, 131.
- 7 O. Senkov, J. Scott, S. Senkova, F. Meisenkothen, D. Miracle, C. Woodward, J. Mater. Sci. 2012, 47, 4062.
- 8 O. Senkov, J. Scott, S. Senkova, D. Miracle, C. Woodward, J. Alloys Compd. 2011, 509, 6043.
- 9 A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, JOM 2014, 66, 1984.
- 10 P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, J. Dolinšek, Phys. Rev. Lett. 2014, 113, 107001.
- 11 S. Shafeie, S. Guo, Q. Hu, H. Fahlquist, P. Erhart, A. Palmqvist, J. Appl. Phys. 2015, 118, 184905.
- 12 I. Kunce, M. Polanski, J. Bystrzycki, Int. J. Hydrogen Energy 2013, 38, 12180.
- 13 Y. Ye, Q. Wang, J. Lu, C. Liu, Y. Yang, Mater. Today 2016, 19, 349.
- 14 S. Telu, A. Patra, M. Sankaranarayana, R. Mitra, S. Pabi, Int. J. Refract. Met. Hard Mater. 2013, 36, 191.
- 15 O. Ogorodnikova, C. Ruset, D. Dellasega, A. Pezzoli, M. Passoni, K. Sugiyama, Y. Gasparyan, V. Efimov, J. Nucl. Mater. 2018, 507, 226.
- 16 O. A. Waseem, H. J. Ryu, Sci. Rep. (UK) 2017, 7, 1926.
- 17 O. Senkov, G. Wilks, D. Miracle, C. Chuang, P. Liaw, Intermetallics 2010, 18, 1758.
- 18 A. Xu, C. Beck, D. E. Armstrong, K. Rajan, G. D. Smith, P. A. Bagot, S. G. Roberts, Acta Mater. 2015, 87, 121.
- 19 K. Arshad, W. Guo, J. Wang, M.-Y. Zhao, Y. Yuan, Y. Zhang, B. Wang, Z.-J. Zhou, G.-H. Lu, Int. J. Refract. Met. Hard Mater. 2015, 50, 59.
- 20 D. King, S. Middleburgh, A. McGregor, M. Cortie, Acta Mater. 2016, 104, 172.
- 21 A. Zunger, S.-H. Wei, L. Ferreira, J. E. Bernard, Phys. Rev. Lett. 1990, 65, 353.
- 22 C. Marker, S. Shang, X. L. Liu, G. Lindwall, Z.-K. Liu, Calphad 2017, 57, 46.
- 23 P. Lafaye, C. Toffolon-Masclet, J.-C. Crivello, J.-M. Joubert, Calphad 2017, 57, 37.
- 24 D. Chattaraj, J. Nucl. Mater. 2017, 496, 286.
- 25 G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 26 I. Kaul, P. Ghosh, Chem. Phys. 2017, 487, 87.
- 27 D. Chattaraj, C. Majumder, J. Alloys Compd. 2018, 732, 160.
- 28 D. Chattaraj, S. Parida, S. Dash, C. Majumder, J. Alloys Compd. 2015, 629, 297.
- 29 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 30 D. Chattaraj, N. Kumar, P. Ghosh, C. Majumder, S. Dash, Appl. Surf. Sci. 2017, 422, 394.
- 31 X. Gonze, Phys. Rev. B 1996, 54, 4383.
- 32 R. P. Feynman, Phys. Rev. 1939, 56, 340.
- 33 P. E. Blöchl, O. Jepsen, O. K. Andersen, Phys. Rev. B 1994, 49, 16223.
- 34 M. Blanco, E. Francisco, V. Luana, Comput. Phys. Commun. 2004, 158, 57.
- 35 Y. Wang, J. Wang, H. Zhang, V. Manga, S. Shang, L. Chen, Z. Liu, J. Phys.: Condens. Matter 2010, 22, 225404.
- 36 J. Kim, S. Kang, J. Alloys Compd. 2012, 540, 94.
- 37 W. C. Oliver, G. M. Pharr, J. Mater. Res. 1992, 7, 1564.
- 38 Y. Ma, Q.-F. Han, Z.-Y. Zhou, Y.-L. Liu, J. Nucl. Mater. 2016, 468, 105.
- 39 X.-J. Yao, X.-F. Shi, Y.-P. Wang, G.-Y. Gan, B.-Y. Tang, Fusion Eng. Des. 2018, 137, 35.
- 40 T. M. Bhat, D. C. Gupta, J. Phys. Chem. Solids 2018, 112, 190.
- 41 H. Zhang, C. Li, Y. Liu, Q. Guo, H. Li, Mater. Sci. Eng. A 2016, 677, 515.
- 42 F. Khelfaoui, M. Ameri, D. Bensaid, I. Ameri, Y. Al-Douri, J. Supercond. Nov. Magn. 2018, 31, 3183.
- 43 H. Ge, F. Tian, Y. Wang, Comput. Mater. Sci. 2017, 128, 185.
- 44 C.-C. Zhu, J. Zhu, H. Wu, H. Lin, Rare Met. 2015, 34, 107.
- 45 W. Xu, J. Han, Z. Wang, C. Wang, Y. Wen, X. Liua, Z. Zhu, Intermetallics 2013, 32, 303.
- 46 E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau, A. Oraevsky, Opt. Express 2013, 21, 25077.
- 47 T. M. Bhat, D. C. Gupta, J. Phys. Chem. Solids 2018, 119, 281.
- 48 H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 49 K. Bidai, M. Ameri, A. Zaoui, I. Ameri, Y. Al-Douri, Chin. J. Phys. 2016, 54, 678.
- 50 E. Francisco, M. Blanco, G. Sanjurjo, Phys. Rev. B 2001, 63, 094107.
- 51 N. Tayebi, K. Bidai, M. Ameri, S. Amel, I. Ameri, Y. Al-Douri, D. Varshney, Chin. J. Phys. 2017, 55, 769.