Effects of Hydrostatic Pressure and Biaxial Strains on the Elastic and Electronic Properties of β-Si3N4
Haiyan Zhu
School of Physical Science and Technology China University of Mining and Technology, Xuzhou 221116, P.R. China
Search for more papers by this authorCorresponding Author
Liwei Shi
School of Physical Science and Technology China University of Mining and Technology, Xuzhou 221116, P.R. China
Search for more papers by this authorShuaiqi Li
School of Physical Science and Technology China University of Mining and Technology, Xuzhou 221116, P.R. China
Search for more papers by this authorShaobo Zhang
School of Physical Science and Technology China University of Mining and Technology, Xuzhou 221116, P.R. China
Search for more papers by this authorTianliang Tang
School of Physical Science and Technology China University of Mining and Technology, Xuzhou 221116, P.R. China
Search for more papers by this authorCorresponding Author
Wangsuo Xia
School of Physical Science and Technology China University of Mining and Technology, Xuzhou 221116, P.R. China
Search for more papers by this authorHaiyan Zhu
School of Physical Science and Technology China University of Mining and Technology, Xuzhou 221116, P.R. China
Search for more papers by this authorCorresponding Author
Liwei Shi
School of Physical Science and Technology China University of Mining and Technology, Xuzhou 221116, P.R. China
Search for more papers by this authorShuaiqi Li
School of Physical Science and Technology China University of Mining and Technology, Xuzhou 221116, P.R. China
Search for more papers by this authorShaobo Zhang
School of Physical Science and Technology China University of Mining and Technology, Xuzhou 221116, P.R. China
Search for more papers by this authorTianliang Tang
School of Physical Science and Technology China University of Mining and Technology, Xuzhou 221116, P.R. China
Search for more papers by this authorCorresponding Author
Wangsuo Xia
School of Physical Science and Technology China University of Mining and Technology, Xuzhou 221116, P.R. China
Search for more papers by this authorAbstract
First principles calculations have been performed to investigate the effects of hydrostatic pressure and biaxial strains (ϵxx) on the electronic and elastic properties of β-Si3N4. Both bulk modulus and Vickers hardness enhance (decrease) with pressure and compressive (tensile) ϵxx. The evolution of BH/GH ratio indicates that β-Si3N4 has a better (worse) ductile behavior under pressure and compressive (tensile) ϵxx. The 3D plots of Young's modulus show huge difference in mechanical properties between [0001] direction and a-b plane and the anisotropy becomes larger by using strain engineering. The sound velocities and Debye temperature are also discussed. The energy gap increases monotonically with pressure, however, strain-induced changes in band gap are asymmetric and nonlinear. β-Si3N4 undergoes an indirect to direct band gap transition at biaxial strain of 5%, while β-Si3N4 is always an indirect band gap semiconductor under pressure and compressive strains.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 S. Veprek, S. Reiprich, S. Z. Li, Appl. Phys. Lett. 1995, 66, 2640.
- 2 T. Sekine, H. He, T. Kobayashi, M. Zhang, F. Xu, Appl. Phys. Lett. 2000, 76, 3706.
- 3 R. Vogelgesang, M. Grimsditch, J. S. Wallace, Appl. Phys. Lett. 2000, 76, 982.
- 4 A. Zerr, M. Kempf, M. Schwarz, E. Kroke, M. Göken, R. Riedel, J. Am. Ceram. Soc. 2002, 85, 86.
- 5 Y. M. Li, M. B. Kruger, J. H. Nguyen, W. A. Caldwell, R. Jeanloz, Solid State Commun. 1997, 103, 107.
- 6 A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fuess, P. Kroll, R. Boehler, Nature 1999, 400, 340.
- 7 A. Y. Liu, M. L. Cohen, Phys. Rev. B 1990, 41, 10727.
- 8 Q. Li, H. Liu, D. Zhou, W. Zheng, Z. Wu, Y. Ma, Phys. Chem. 2012, 14, 13081.
- 9 H. Z. Pan, M. Xu, W. J. Zhu, H. P. Zhou, Acta Phys. Sin. 2006, 55, 3585.
- 10 E. C. Paloura, J. Lagowski, H. C. Gatos, J. Appl. Phys. 1991, 69, 3995.
- 11 R. E. Trentin, A. L. Bandeira, F. Cemin, M. Morales, C. L. G. Amorim, C. Aguzzoli, F. Alvarez, I. J. R. Baumvol, M. C. M. Farias, C. A. Figueroa, Surf. Coat. Technol. 2014, 254, 327.
- 12
P. R. Kishore Kumar,
V. N. Manikandan,
P. Deepak Raj,
M. Sridharan,
Mater. Today: Proc.
2016,
3, 1536.
10.1016/j.matpr.2016.04.039 Google Scholar
- 13 P. Zinin, M. H. Manghnani, S. Tkachev, V. Askarpour, Phys. Rev. B 1999, 60, 2844.
- 14 Y. F. Duan, D. Lv, K. Liu, H. B. Wu, L. X. Qin, L. W. Shi, G. Tang, J. Appl. Phys. 2015, 117, 045711.
- 15 Y. F. Duan, Q. L. Xia, L. W. Shi, G. Tang, H. L. Shi, Appl. Phys. Lett. 2012, 100, 022104.
- 16 L. W. Shi, Y. Qin, J. Hu, Y. F. Duan, L. C. Qu, L. Wu, G. Tang, EPL 2014, 106, 57001.
- 17 L. W. Shi, L. Wu, Y. F. Duan, J. Hu, X. Q. Yang, G. Tang, L. Z. Hao, Eur. Phys. J. B 2013, 86, 1.
- 18
D. Hardie,
K. H. Jack,
Nature
1957,
180, 4581.
10.1038/180332a0 Google Scholar
- 19 W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, 1133.
- 20 J. S. Lin, A. Qteish, M. C. Payne, V. Heine, Phys. Rev. B 1993, 47, 4174.
- 21 S. B. Zhang, L. W. Shi, Comput. Mater. Sci. 2018, 142, 99.
- 22 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 23 R. M. Martin, Phys. Rev. B 1972, 6, 4546.
- 24 Y. F. Duan, D. Lv, K. Liu, H. B. Wu, L. X. Qin, L. W. Shi, G. Tang, J. Appl. Phys. 2015, 117, 045711.
- 25 E. S. Fisher, M. H. Manghnani, J. R. Wang, J. Am. Ceram. Soc. 1992, 75, 908.
- 26 S. P. Dodd, M. Cankurtaran, G. A. Saunders, B. James, J. Mater. Sci. 2001, 36, 2557.
- 27 B. H. Yu, D. Chen, Acta Phys. Sin. 2012, 61, 197102.
- 28 R. Hill, Proc. Phys. Soc. A 1952, 65, 349.
- 29 J. A. Wendel, W. A. Goddard, J. Chem. Phys. 1992, 97, 5048.
- 30 S. F. Pugh, Philos. Mag. 1954, 45, 823.
- 31 F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, Y. Tian, Phys. Rev. Lett. 2003, 91, 015502.
- 32 R. A. Andrievski, Int. J. Refract. Met. Hard Mater. 2001, 19, 447.
- 33 S. I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 2008, 101, 055504.
- 34 P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johnnsson, J. Wills, O. Eriksson, J. Appl. Phys. 1998, 84, 4891.
- 35 U. F. Ozyar, E. Deligoz, K. Colakoglu, Solid State Sci. 2015, 40, 92.
- 36 J. Fu, F. Bernarda, S. Kamali-Bernard, J. Phys. Chem. Solids 2017, 101, 74.
- 37 G. Grimvall, B. Magyari-Köpe, V. Ozolinš, K. A. Persson, Rev. Mod. Phys. 2012, 84, 945.
- 38
X. F. Lu,
D. Qiu,
M. Chen,
L. Fan,
C. Wang,
H. J. Wang,
G. J. Qiao,
Mater. Res. Innov.
2013,
17, 201.
10.1179/1433075X12Y.0000000049 Google Scholar
- 39 Z. Y. Tao, Y. C. Lu, W. M. Shan, D. Y. Mian, Acta Phys. Sin. 2008, 57, 1048.
- 40 V. Milman, M. C. Warren, J. Phys.: Condens. Matter 2001, 13, 241.
- 41 Y. Qin, L. W. Shi, S. B. Zhang, F. Jin, L. Y. Zhang, W. S. Xia, Y. F. Duan, J. Alloys Compd. 2016, 686, 914.