Ab Initio Study on Structure, Elastic, and Mechanical Properties of Lanthanide Sesquioxides
Corresponding Author
Arup Kumar Pathak
Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400085, India
Search for more papers by this authorCorresponding Author
Tijo Vazhappilly
Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400085, India
Search for more papers by this authorCorresponding Author
Arup Kumar Pathak
Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400085, India
Search for more papers by this authorCorresponding Author
Tijo Vazhappilly
Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400085, India
Search for more papers by this authorAbstract
The structural, mechanical and elastic properties of industrially important C-type lanthanide sesquioxides, Ln2O3 (Ln = Pm, Sm, Eu, Gd, Tb, Dy), are studied by employing ab initio electronic structure calculations. The calculated lattice parameters for Ln2O3 match very well with the experimental crystal structures and clearly reproduce the lanthanide contraction across the lanthanide series. Similarly, the elastic constants, bulk modulus and other mechanical properties obtained from our calculations are in very good agreement with the values available in the literature. The knowledge about bulk modulus and shear modulus could provide the volume and shape variation of material with respect to external strain which has significant impact for selecting suitable materials for novel applications.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 B. M. E. Russbueldt, W. F. Hoelderich, J. Catal. 2010, 271, 290.
- 2 M. Durazzo, F. B. V. Oliveira, E. F. Urano de Carvalho, H. G. Riella, J. Nucl. Mater. 2010, 400, 183.
- 3 L. R. dos Santos, M. Durazzo, E. F. Urano de Carvalho, H. G. Riella, J. Nucl. Mater. 2017, 493, 30.
- 4 H. F. Johnston, J. L. Russell, W. L. Silvernail, Nucl. Sci. Eng. 1959, 6, 93.
- 5 F. Druon, M. Velázquez, P. Veber, S. Janicot, O. Viraphong, G. Buşe, M. A. Ahmed, T. Graf, D. Rytz, P. Georges, Opt. Lett. 2013, 38, 4146.
- 6 L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Hu, Y. Zhao, J. Mater. Chem. 2012, 22, 966.
- 7 S. Chawla, N. Kumar, H. Chander, J. Lumin. 2009, 129, 114.
- 8 A. I. Y. Tok, F. Y. C. Boey, Z. Dong, X. L. Sun, J. Mater. Process. Technol. 2007, 190, 217.
- 9 M. Zinkevich, Prog. Mater Sci. 2007, 52, 597.
- 10 G.-y. Adachi, N. Imanaka, Chem. Rev. 1998, 98, 1479.
- 11 M. Tang, P. Lu, J. A. Valdez, K. E. Sickafus, J. Appl. Phys. 2006, 99, 063514.
- 12 K. E. Sickafus, J. A. Valdez, J. R. Williams, R. W. Grimes, H. T. Hawkins, Nuclear Instrum. Methods Phys. Res. B 2002, 191, 549.
- 13 M. Tang, J. A. Valdez, P. Lu, G. E. Gosnell, C. J. Wetteland, K. E. Sickafus, J. Nucl. Mater. 2004, 328, 71.
- 14 C. L. Tracy, M. Lang, F. Zhang, C. Trautmann, R. C. Ewing, Phys. Rev. B 2015, 92, 174101.
- 15 M. Rahm, N. V. Skorodumova, Phys. Rev. B 2009, 80, 104105.
- 16 L. Petit, A. Svane, Z. Szotek, W. M. Temmerman, Phys. Rev. B 2005, 72, 205118.
- 17 M. Shafiq, S. Arif, I. Ahmad, S. J. Asadabadi, M. Maqbool, H. A. Rahnamaye Aliabad, J. Alloys Compd. 2015, 618, 292.
- 18 N. Hirosaki, S. Ogata, C. Kocer, J. Alloys Compd. 2003, 351, 31.
- 19 B. Wu, M. Zinkevich, F. Aldinger, D. Wen, L. Chen, J. Solid State Chem. 2007, 180, 3280.
- 20 D. Richard, L. A. Errico, M. Rentería, J. Alloys Compd. 2016, 664, 580.
- 21 A. o. Furmanchuk, A. Agrawal, A. Choudhary, RSC Adv. 2016, 6, 95246.
- 22 G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
- 23 G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.
- 24 G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 25 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 26 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
- 27 P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 28 G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 29 J. M. Solomon, A. Navrotsky, M. Asta, J. Nucl. Mater. 2015, 457, 252.
- 30
V. Levitin,
Interatomic Bonding in Solids: Fundamentals, Simulation, and Applications,
Wiley-VCH,
Weinheim, Germany
2013.
10.1002/9783527671557 Google Scholar
- 31 M. Ramzan, Y. Li, R. Chimata, R. Ahuja, Comput. Mater. Sci. 2013, 71, 19.
- 32 D. Connétable, O. Thomas, Phys. Rev. B 2009, 79, 094101.
- 33 H. R. Hoekstra, Inorg. Chem. 1966, 5, 754.
- 34 M. Born, K. Huang, Dynamics Theory of Crystal Lattices, Oxford University Press, Oxford 1954.
- 35 Y. Makino, S. Miyake, J. Alloys Compd. 2000, 313, 235.
- 36 W. Voigt, Teubner, Lehrbuch der Kristallphysik, Leipzig, Germany 1928, p. 962.
- 37 R. Hill, Proc. Phys. Soc. A 1952, 65, 349.
- 38 D. G. Pettifor, Mater. Sci. Technol. 1992, 8, 345.
- 39 Y. F. Li, B. Xiao, L. Sun, Y. M. Gao, S. Q. Ma, D. W. Yi, J. Phys. Chem. Solids 2017, 103, 49.
- 40 P. H. Mott, J. R. Dorgan, C. M. Roland, J. Sound Vib. 2008, 312, 572.
- 41 H. Fu, D. Li, F. Peng, T. Gao, X. Cheng, Comput. Mater. Sci. 2008, 44, 774.
- 42 L. Kleinman, Phys. Rev. 1962, 128, 2614.