Zero Bias Conductance in d-Wave Superconductor/Ferromagnet/d-Wave Superconductor Trilayers
Corresponding Author
Zorica Popović
University of Belgrade, Faculty of Physics, Studentski trg 12, 11001 Belgrade, Serbia
Search for more papers by this authorPredrag Miranović
University of Montenegro, Faculty of Natural Sciences and Mathematics, Cetinjska 2, 81000 Podgorica, Montenegro
Search for more papers by this authorRadomir Zikic
University of Belgrade, Institute of Physics, Pregrevica 118, 11080 Belgrade, Serbia
Search for more papers by this authorCorresponding Author
Zorica Popović
University of Belgrade, Faculty of Physics, Studentski trg 12, 11001 Belgrade, Serbia
Search for more papers by this authorPredrag Miranović
University of Montenegro, Faculty of Natural Sciences and Mathematics, Cetinjska 2, 81000 Podgorica, Montenegro
Search for more papers by this authorRadomir Zikic
University of Belgrade, Institute of Physics, Pregrevica 118, 11080 Belgrade, Serbia
Search for more papers by this authorAbstract
Zero bias conductance (ZBC) in ballistic voltage-biased d-wave superconductor/ferromagnet/d-wave superconductor (DFD) junctions is studied theoretically, for various orientations of superconducting electrodes. We show that ZBC increases with exchange field h in the F barrier, up to some maximum value of h which is of the order of the pair potential in the superconducting electrodes. We find that for a given exchange field, ZBC monotonically decreases with temperature. When the exchange field h is smaller or of the order of the superconducting gap Δ, ZBC has a distinct kink at some characteristic temperature T*. It appears that for this temperature Δ(T*) = h. Thus, observing T* where the kink in the ZBC temperature dependence occurs provides a reliable measurement method to determine exchange fields of the order of the superconducting gap.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 T. Golod, A. Rydh, V. M. Krasnov, I. Marozau, M. A. Uribe-Laverde, D. K. Satapathy, Th. Wagner, C. Bernhard, Phys. Rev. B 2013, 87, 134520.
- 2 C. Visani, Z. Sefrioui, J. Tornos, C. Leon, J. Briatico, M. Bibes, A. Barthélémy, J. Santamara, J. E. Villegas, Nature Phys. 2012, 8, 539.
- 3 G. Koren, T. Kirzhner, P. Aronov, Phys. Rev. B 2012, 85, 024514.
- 4 Y. Kalcheim, T. Kirzhner, G. Koren, O. Millo, Phys. Rev. B 2011, 83, 064510.
- 5 K. Dybko, K. Werner-Malento, P. Aleshkvych, M. Wojcik, M. Sawicki, P. Przyslupski, Phys. Rev. B 2009, 80, 144504.
- 6
P. H. Barsic,
O. T. Valls,
Phys. Rev. B
2009,
79, 014502.
10.1103/PhysRevB.79.014502 Google Scholar
- 7 J. Linder, A. Sudbø, Phys. Rev. B 2007, 75, 134509.
- 8
Z. Faraii,
M. Zareyan,
Phys. Rev. B
2004,
69, 014508.
10.1103/PhysRevB.69.014508 Google Scholar
- 9 S. Kashiwaya, Y. Tanaka, N. Yoshida, M. R. Beasley, Phys. Rev. B 1999, 60, 3572.
- 10 I. Žutić, O. T. Valls, Phys. Rev. B 1999, 60, 6320. 2000, 61, 1555.
- 11 J. X. Zhu, B. Friedman, C. S. Ting, Phys. Rev. B 1999, 59, 9558.
- 12 J. X. Zhu, C. S. Ting, Phys. Rev. B 2000, 61, 1456.
- 13 Z. C. Dong, D. Y. Xing, Z. D. Wang, Z. Zheng, J. Dong, Phys. Rev. B 2001, 63, 144520.
- 14 Z. Y. Chen, A. Biswas, I. Žutic, T. Wu, S. B. Ogale, R. L. Greene, T. Venkatesan, Phys. Rev. B 2001, 63, 212508.
- 15 I. Asulin, O. Yuli, G. Koren, O. Millo, Phys. Rev. B 2006, 74, 092501.
- 16 N. Stefanakis, Phys. Rev. B 2001, 64, 224502.
- 17 T. Hirai, Y. Tanaka, N. Yoshida, Y. Asano, J. Inoue, S. Kashiwaya, Phys. Rev. B 2003, 67, 174501.
- 18 N. Yoshida, H. Itoh, T. Hirai, Y. Tanaka, J. Inoue, S. Kashiwaya, Physica C 2002, 367, 165.
- 19 L. Yang, J. Liu, J. Phys.: Condens. Matter 2008, 20, 335212.
- 20
G. Annunziata,
M. Cuoco,
P. Gentile,
A. Romano,
C. Noce,
Phys. Rev. B
2011,
83, 094507.
10.1103/PhysRevB.83.094507 Google Scholar
- 21 N. Yoshida, M. Yamashiro, J. Phys.: Condens. Matter 2012, 24, 365702.
- 22 D. J. Harlingen, Rev. Mod. Phys. 1995, 67, 515.
- 23 I. Iguchi, W. Wang, M. Yamazaki, Y. Tanaka, S. Kashiwaya, Phys. Rev. B 2000, 62, R6131.
- 24 A. S. Vasenko, S. Kawabata, A. Ozaeta, A. A. Golubov, F. S. Bergeret, F. W. J. Hekking, J. Magn. Magn. Mater. 2014, 383, 175.
- 25
A. Ozaeta,
A. S. Vasenko,
F. W. J. Hekking,
F. S. Bergeret,
Phys. Rev. B
2012,
86, 060509(R).
10.1103/PhysRevB.86.060509 Google Scholar
- 26
F. S. Bergeret,
F. Giazotto,
Phys. Rev. B
2014,
89, 054505.
10.1103/PhysRevB.89.054505 Google Scholar
- 27 J. Linder, A. V. Balatsky, arXiv:1709.03986v1 [cond-mat.supr-con].
- 28 F. S. Bergeret, A. F. Volkov, K. B. Efetov, Phys. Rev. Lett. 2001, 86, 4096.
- 29 A. Kadigrobov, R. I. Shekhter, M. Jonson, Europhys. Lett. 2001, 54, 394.
- 30 F. S. Bergeret, A. F. Volkov, K. B. Efetov, Rev. Mod. Phys. 2005, 77, 1321.
- 31 A. F. Volkov, K. B. Efetov, Phys. Rev. B 2008, 78, 024519.
- 32 T. Yokoyama, Y. Tanaka, A. A. Golubov, Phys. Rev. B 2007, 75, 134510.
- 33 Y. Tanaka, M. Sato, N. Nagaosa, J. Phys. Soc. Jpn. 2012, 81, 011013.
- 34
A. F. Volkov,
A. V. Zaitsev,
T. M. Klapwijk,
Physica C
1993,
210, 21.
10.1016/0921-4534(93)90005-B Google Scholar
- 35 B. Muhlschlegel, Z. Phys. 1959, 155, 313.
- 36 R. Kümmel, U. Gunsenheimer, R. Nicolsky, Phys. Rev. B 1990, 42, 3992.
- 37
Z. Popović,
L. Dobrosavljević-Grujić,
R. Zikic,
J. Phys. Soc. Jpn.
2013,
82, 114714.
10.7566/JPSJ.82.114714 Google Scholar
- 38 Z. Popović, R. Zikic, L. Dobrosavljević-Grujić, Prog. Theor. Exp. Phys. 2015, 103I01.
- 39 L. Y. Yang, Z. M. Zheng, H. L. Yu, G. Y. Sun, D. Y. Xing, Eur. Phys. J. B 2004, 39, 377.
- 40 Z. Popović, L. Dobrosavljević-Grujić, R. Zikic, Phys. Rev. B 2012, 85, 174510.
- 41 K. Senepati, R. C. Budhani, Pramana J. Phys. 2007, 69, 267.