Evolution of Electronic Spectrum and Magnetic Properties of the High-Temperature Cubic Phase La1−xSrxFeO3−δ in Coherent Potential Approximation
Corresponding Author
Veronika M. Zainullina
Institute of Solid State Chemistry, Ural Branch RAS, 620990 Ekaterinburg, Russia
Search for more papers by this authorMichael А. Korotin
М.N. Mikheev Institute of Metal Physics, Ural Branch RAS, 620137 Ekaterinburg, Russia
Search for more papers by this authorVictor L. Kozhevnikov
Institute of Solid State Chemistry, Ural Branch RAS, 620990 Ekaterinburg, Russia
Search for more papers by this authorCorresponding Author
Veronika M. Zainullina
Institute of Solid State Chemistry, Ural Branch RAS, 620990 Ekaterinburg, Russia
Search for more papers by this authorMichael А. Korotin
М.N. Mikheev Institute of Metal Physics, Ural Branch RAS, 620137 Ekaterinburg, Russia
Search for more papers by this authorVictor L. Kozhevnikov
Institute of Solid State Chemistry, Ural Branch RAS, 620990 Ekaterinburg, Russia
Search for more papers by this authorAbstract
The electron structure features in the high-temperature cubic perovskite-like ferrite La1−xSrxFeO3−δ are studied depending on concentration of disordered cation and anion defects by use of the Coherent Potential Approximatiom (CPA) taking into account the strong electronic correlations (U) in Fe d-shell. The variations of electronic-energy and magnetic characteristics are described at 0 ≤ δ ≤ 0.25 and 0 ≤ x ≤ 0.50. The spin state of iron atoms in stoichiometric δ = 0 compositions is shown to change near x = 0.4, which gives an explanation to the observed experimental data.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 V. L. Kozhevnikov, I. A. Leonidov, M. V. Patrakeev, A. A. Markov, Y. N. Blinovskov, J. Solid State Electrochem. 2009, 13, 391.
- 2
V. V. Kharton (Ed.),
Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes,
Wiley-VCH,
Weinheim
2011.
10.1002/9783527635566 Google Scholar
- 3 M. V. Patrakeev, I. A. Leonidov, I. A. Kozhevnikov, K. R. Poeppelmeier, J. Solid State Chem. 2005, 178, 921.
- 4 Y. Wei, W. Yang, J. Caro, H. Wang, Chem. Eng. J. 2013, 220, 185.
- 5 A. Fossdal, M. Menon, I. Wærnhus, K. Wiik, M.-A. Einarsrud, T. Grande, J. Am. Ceram. Soc. 2004, 87, 1952.
- 6 Q. Cai, Neutron diffraction studies on ABO3 (A = La, Sr, B = Fe, Co, Ni, Cu, Mn, Ti) perovskite used in solid oxide fuel cell (SOFC) and double perovskite Ba2YRu0.85Cu0.15O6 superconductor. Ph.D. Dissertation, University of Missouri-Columbia, 2009, p. 138.
- 7
A. A. Markov,
K. Yu. Chesnokov,
M. V. Patrakeev,
I. A. Leonidov,
A. V. Chukin,
O. N. Leonidova,
V. L. Kozhevnikov,
J. Solid State Electrochem.
2016,
225, 225.
10.1007/s10008-015-3027-0 Google Scholar
- 8 M. Eibschütz, S. Shtrikman, D. Treves, Phys. Rev. 1967, 156, 562.
- 9 T. Arima, Y. Tokura, J. B. Torrance, Phys. Rev. B 1993, 48, 17006.
- 10 X.-D. Zhou, Q. Cai, J. Yang, M. Kim, W. B. Yelon, W. J. James, Y.-W. Shin, B. J. Scarfino, H. U. Anderson, J. Appl. Phys. 2005, 97, 10C314.
- 11 W. C. Koehler, E. O. Wollan, J. Phys. Chem. Solids 1957, 2, 100.
- 12 J. B. Yang, W. B. Yelon, W. J. James, Z. Chu, M. Komecki, Y. X. Xie, X. D. Zhou, H. U. Anderson, A. G. Joshi, S. K. Malik, Phys. Rev. B 2002, 66, 184415.
- 13 O. K. Andersen, in The Electronic Structure of Complex Systems (Eds: P. Phariseau, W. M. Temmerman) Plenum Press, New York 1984, p. 66.
- 14Y. A. Izyumov, V. I. Anisimov, Electronic Structure of Compounds with Strong Electron Correlations, Research Center “Regular and chaotic dynamics”, Moscow-Izhevsk 2009, p. 376.
- 15 V. E. Alexandrov, J. Maier, R. A. Evarestov, Phys. Rev. B. 2008, 77, 075111.
- 16 A. M. Ritzmann, A. B. Muñoz-García, M. Pavone, J. A. Keith, E. A. Carter, Chem. Mater. 2013, 25, 3011.
- 17 D. Gryaznov, S. Baumann, E. A. Kotomin, R. Merkle, J. Phys. Chem. C 2014, 118, 29542.
- 18 М. А. Korotin, N. А. Skorikov, V. М. Zainullina, E. Z. Kurmaev, А. V. Lukoyanov, V. I. Anisimov, JETP Lett. 2012, 94, 806.
- 19 W. Metzner, D. Vollhardt, Phys. Rev. Lett. 1989, 62, 324.
- 20 М. А. Korotin, N. А. Skorikov, S. L. Skornyakov, А. О. Shorikov, V. I. Anisimov, JETP Lett. 2014, 100, 823.
- 21 М. А. Korotin, V. М. Zainullina, V. L. Kozhevnikov, JETP Lett. 2015, 102, 307.
- 22 V. М. Zainullina, М. А. Korotin, V. L. Kozhevnikov, JETP Lett. 2016, 104, 269.
- 23 V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, D. Vollhardt, Phys. Rev. B 2005, 71, 125119.
- 24 A. Chainani, M. Mathew, D. Sarma, Phys. Rev. B 1993, 48, 14818.
- 25 H. Wadati, D. Kobayashi, H. Kumigashira, K. Okazaki, T. Mizokawa, A. Fujimori, K. Horiba, M. Oshima, N. Hamada, M. Lippmaa, M. Kawasaki, H. Koinuma, Phys. Rev. B 2005, 71, 035108.
- 26 T. Miyake, K. Nakamura, R. Arita, M. Imada, J. Phys. Soc. Jpn. 2010, 79, 044705.
- 27 V. I. Anisimov, D. M. Korotin, S. V. Streltsov, A. V. Kozhevnikov, J. Kunes, A. O. Shorikov, M. A. Korotin, JETP Lett. 2008, 88, 729.
- 28 I. Solovyev, N. Hamada, K. Terakura, J. Phys. Soc. Jpn. 1996, 53, 7158.
- 29 L. J. Berchmans, R. Sindhu, S. Angappan, C. O. Augustin, J. Mater. Process. Technol. 2008, 207, 301.
- 30 W. M. Xu, O. Naaman, G. Kh. Rozenberg, M. P. Pasternak, R. D. Taylor, Phys. Rev. B 2001, 64, 094411.
- 31 J. Zaanen, G. A. Sawatzky, J. W. Allen, Phys. Rev. Lett. 1985, 55, 418.