Nd3+-Doped Lead Boro Selenate Glass: A New Efficient System for Near-Infrared 1.06 μm Laser Emission
Pathuri Naresh
Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522 510 India
Department of Physics, Potti Sriramulu Chalavadi Mallikarjuna Rao College of Engineering & Technology, Vijayawada, Andhra Pradesh, 520001 India
Search for more papers by this authorCorresponding Author
Marek Kostrzewa
Institute of Physics, Opole University of Technology, Opole, 45370 Poland
Search for more papers by this authorMikhail G. Brik
College of Sciences & CQUPT-BUL Innovation Institute, Chongqing University of Posts and Telecommunications, Chongqing, 400065 P. R. China
Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411 Estonia
Department of Theoretical Physics, Jan Długosz University, Armii Krajowej 13/15, Częstochowa, PL-42200 Poland
Search for more papers by this authorAnnapureddy Siva Sesha Reddy
Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522 510 India
Search for more papers by this authorNutakki Krishna Mohan
Department of Physics, Akkineni Nageswara Rao College (Autonomous), Gudivada, 521 301 India
Search for more papers by this authorVandana Ravi Kumar
Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522 510 India
Search for more papers by this authorMichal Piasecki
Department of Theoretical Physics, Jan Długosz University, Armii Krajowej 13/15, Częstochowa, PL-42200 Poland
Search for more papers by this authorCorresponding Author
Nalluri Veeraiah
Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522 510 India
Search for more papers by this authorPathuri Naresh
Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522 510 India
Department of Physics, Potti Sriramulu Chalavadi Mallikarjuna Rao College of Engineering & Technology, Vijayawada, Andhra Pradesh, 520001 India
Search for more papers by this authorCorresponding Author
Marek Kostrzewa
Institute of Physics, Opole University of Technology, Opole, 45370 Poland
Search for more papers by this authorMikhail G. Brik
College of Sciences & CQUPT-BUL Innovation Institute, Chongqing University of Posts and Telecommunications, Chongqing, 400065 P. R. China
Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411 Estonia
Department of Theoretical Physics, Jan Długosz University, Armii Krajowej 13/15, Częstochowa, PL-42200 Poland
Search for more papers by this authorAnnapureddy Siva Sesha Reddy
Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522 510 India
Search for more papers by this authorNutakki Krishna Mohan
Department of Physics, Akkineni Nageswara Rao College (Autonomous), Gudivada, 521 301 India
Search for more papers by this authorVandana Ravi Kumar
Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522 510 India
Search for more papers by this authorMichal Piasecki
Department of Theoretical Physics, Jan Długosz University, Armii Krajowej 13/15, Częstochowa, PL-42200 Poland
Search for more papers by this authorCorresponding Author
Nalluri Veeraiah
Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522 510 India
Search for more papers by this authorAbstract
An exotic series of glasses with the composition 39PbO—(60–x)B2O3–xSeO2:1.0 Nd2O3 (10 ≤ x ≤ 50) is prepared and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) techniques. Results of infrared (IR), Raman, and X-ray photoelectron spectroscopy (XPS) studies reveal that the glass network comprises quarantined selenite [SeO3]2− groups (that act as modifiers) and selenate [SeO4]2− groups in addition to BO3 and BO4 units. With the increase in SeO2 content, the concentration of selenite groups is found to be dominant. The optical absorption (OA) spectra exhibit several bands due to 4I9/2→2P1/2, 2G9/2, 4G9/2,7/2,5/2, 2H11/2, and 4F9/2, 7/2,5/2,3/2 transitions. The spectra are characterized using J–O theory and J–O parameters are found to follow the order: Ω2 > Ω6 > Ω4. The emission spectra recorded at λexc = 808 nm exhibit bands due to 4F3/2 → 4I9/2, 4I11/2, and 4I13/2 transitions. With increase in SeO2 content, intensity of all emission bands significantly increases. The quantum efficiency evaluated from the measured and calculated lifetimes of the 4F3/2 → 4I11/2 transition is found to be enhanced by 20% with increase in SeO2 from 10 to 50 mol%. The spectra are further analyzed quantitatively using kinetic rate equations of various excited levels and the reasons for enhancement of photoluminescence (PL) emission are identified and discussed.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1A. Bachvarova-Nedelcheva, R. Iordanova, Y. Dimitriev, St. Yordanov, J. Non-Cryst. Solids 2009, 355, 2027.
- 2A. Nommeots-Nomm, N. G. Boetti, T. Salminen, J. Massera, M. Hokka, L. Petit, J. Alloys Compd. 2018, 751, 224.
- 3P. Goyal, Y. K. Sharma, S. Pal, U. C. Bind, S.-C. Huang, S. L. Chung, J. Non-Cryst. Solids 2017, 463, 118.
- 4Y. Dimitriev, A. Bachvarova-Nedelcheva, R. Iordanova, Mater. Res. Bull. 2008, 43, 1905.
- 5A. Palui, A. Ghosh, J. Phys. Chem. C 2017, 121, 8738.
- 6Q. Chen, K. Su, Z. Zhao, Q. Ma, J. Non-Cryst. Solids 2018, 498, 448.
- 7A. Palui, A. Ghosh, J. Non-Cryst. Solids 2018, 482, 230.
- 8A. Palui, A. Ghosh, J. Appl. Phys. 2017, 121, 125104.
- 9A. Palui, A. Ghosh, Solid State Ion. 2020, 343, 115126.
- 10P. J. Bray, J. Non-Cryst. Solids 1985, 73, 19.
- 11A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, F. Vetrone, Adv. Opt. Mater. 2015, 3, 687.
- 12C. Tian, Xi. Chen, Yu. Shuibao, Solid State Sci. 2015, 48, 171.
- 13M. S. Rao, B. Sanyal, K. Bhargavi, Y. Gandhi, M. Piasecki, N. Veeraiah, J. Alloys Compd. 2014, 616, 257.
- 14F. B. Costa, K. Yukimitu, L. A. O. Nunes, M. S. Figueiredo, L. H. C. Andrade, S. M. Lima, J. C. S. Moraes, J. Phys. Chem. Solids 2016, 88, 54.
- 15T. Som, B. Karmakar, J. Quant, J. Quant. Spectrosc. Radiat Transf. 2011, 112, 2469.
- 16P. Manasa, T. Srihari, Ch Basavapoornima, A. S. Joshi, C. K. Jayasankar, J. Lumin. 2019, 211, 233.
- 17V. Naresh, N. Lee, Ceram. Inter. 2019, 45, 22649.
- 18A. S. Sr. Reddy, G. Lakshminarayana, N. Purnachand, V. R. Kumar, N. Venkatramaiah, V. R. Kumar, N. Veeraiah, J. Lumin. 2020, 226, 117481.
- 19M. S. Rao, V. Sudarsan, M. G. Brik, K. Bhargavi, Ch. S. Rao, Y. Gandhi, N. Veeraiah, Optics Commun. 2013, 298–299, 135.
- 20D. Rjaeswara Rao, G. S. Baskaran, Y. Gandhi, N. Veeriah, Physica B 2015, 457, 117.
- 21H. Cai, L. Yao, Y. Xia, C. Dao, J. Lic, L. Lin, Z. Huang, G. Chen, J. Sol. Energy 2019, 193, 986.
- 22L. Ma, S. M. Islam, C. Xiao, J. Zhao, H. Liu, M. Yuan, G. Sun, H. Li, S. Ma, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 12745.
- 23S. R. Elliott, Physics of Amorphous Materials, Longman, London 1990.
- 24S. Thakur, A. Kaur, L. Singh, Opt. Mater. 2019, 96, 109338.
- 25K. J. Rao, Structural Chemistry of Glasses, Elsevier, Amsterdam 2002.
- 26K. S. Rao, V. R. Kumar, Y. Zhydachevskii, A. Suchocki, M. Piasecki, G. N. Raju, V. Ravi Kumar, N. Veeraiah, J. Lumin. 2017, 192, 443.
- 27H. Li, Y. Su, L. Li, D. M. Strachan, J. Non-Cryst. Solids 2001, 292, 167.
- 28C. N. Santos, D. De Sousa Meneses, P. Echegut, D. R. Neuville, A. C. Hernandes, A. Ibanez, Appl. Phys. Lett. 2009, 94, 151901.
- 29T. Sekiya, N. Mochida, J. Ceram. Soc. Jpn. 1998, 106, 256.
- 30D. Donaldson, M. T. Donaghue, S. D. Ross, Spectrochim. Acta A 1974, 30, 1967.
- 31T. Furukawa, S. A. Brawer, W. B. White, J. Mater. Sci. 1978, 13, 268.
- 32K. E. Egili, H. Doweidar, Y. M. Moustafa, I. Abbas, Physica B 2003, 339, 237.
- 33P. Nachimuthu, M. Vithal, R. Jagannathan, J. Am. Ceram. Soc. 2000, 83, 597.
- 34B. R. Judd, Phys. Rev. 1962, 127, 750.
- 35G. S. Oflet, J. Chem. Phys. 1962, 37, 511.
- 36P. Sudhakar, A. S. S. Reddy, Y. Zhydachevskyy, A. Suchocki, M. G. Brik, V. R. Kumar, M. Piasecki, N. Veeraiah, Opt. Mater. 2018, 86, 87.
- 37P. Sudhakar, V. R. Kumar, V. R. Kumar, N. Purnachand, A. S. S. Reddy, N. Veeraiah, J. Lumin. 2018, 199, 416.
- 38P. Sudhakar, A. Siva Sesha Reddy, Y. Zhydachevskyy, M. G. Brik, A. Suchocki, V. R. Kumar, M. Piasecki, N. Veeraiah, J. Non-Cryst. Solids 2019, 503–504, 243.
- 39L. Srinivasa Rao, P. Venkateswara Rao, M. V. N. V. Sharma, N. Veeraiah, Optik 2017, 142, 674.
- 40R. R. Jacobs, M. J. Weber, IEEE J. Quantum Electron. 1976, 12, 102.
- 41E. A. Lalla, U. R. Rodriguez-Mendoza, A. D. Lozano-Gorrin, A. Sanz-Arranz, F. Rull, V. Lavin, Opt. Mater. 2016, 51, 35.
- 42M. Venkateswarlu, S. K. Mahamuda, K. Swapna, M.V.V.K.S. Prasad, A. S. Rao, A. M. Babu, S. Shakya, G. V. Prakash, Opt. Mater. 2015, 39, 8.
- 43K. Zou, H. Guo, M. Lu, W. Li, C. Hou, W. Wei, J. He, B. Peng, B. Xiangli, Opt. Express 2009, 17, 10001.
- 44L. R. P. Kassab, S. H. Tatumi, C. M. S. Mendes, L. C. Courrol, N. U. Wetter, Opt. Express 2000, 6, 104.
- 45C. R. Kesavulu, H. J. Kim, S. W. Lee, J. Kaewkhao, N. Wantana, E. Kaewnuam, S. Kothan, S. Kaewjaeng, J. Alloys Compd. 2017, 695, 590.
- 46M. Sundara Rao, V. Sudarsan, M. G. Brik, K. Bhargavi, Ch S. Rao, Y. Gandhi, N. Veeraiah, Optics Commun. 2013, 298–299, 135.
- 47Y. Qiao, N. Da, D. Chen, Q. Zhou, J. Qiu, T. Akai, App. Phys. B 2007, 87, 717.
- 48Y. Gandhi, I. V. Kityk, M. G. Brik, P. Raghava Rao, N. Veeraiah, J. Alloys Compd. 2010, 508, 278.
- 49R. Balakrishnaiah, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, M. Bettinelli, J. Phys.: Cond. Matter 2006, 18, 165.
- 50M. Deepa, R. Doddoji, C. S. D. Viswanath, A. V. Chandrasekhar, J. Lumin. 2019, 213, 191.
- 51V. R. Kumar, G. Giridhar, V. Sudarsan, N. Veeraiah, J. Alloys Compd. 2017, 695, 668.
- 52H. Fares, I. Jlassi, S. Hraiech, H. Elhouichet, M. Ferid, J. Quant. Spectrosc. Radiat. Transf. 2014, 147, 224.
- 53C. R. Kesavulu, K. Suresh, J. F. M. DosSantos, T. Catunda, H. J. Kim, C. K. Jayasankar, J. Lumin. 2017, 192, 1047.
- 54G. Pozza, D. Ajò, M. Bettinelli, A. Speghini, M. Casarin, Solid State Commun. 1996, 97, 521.