Location and Properties of Carrier Traps in mc-Si Solar Cells Subjected to Degradation at Elevated Temperatures
Corresponding Author
Teimuraz Mchedlidze
Institute for Applied Physics, Technische Universität Dresden, Haeckelstr. 3, 01062 Dresden, Germany
Search for more papers by this authorJoerg Weber
Institute for Applied Physics, Technische Universität Dresden, Haeckelstr. 3, 01062 Dresden, Germany
Search for more papers by this authorCorresponding Author
Teimuraz Mchedlidze
Institute for Applied Physics, Technische Universität Dresden, Haeckelstr. 3, 01062 Dresden, Germany
Search for more papers by this authorJoerg Weber
Institute for Applied Physics, Technische Universität Dresden, Haeckelstr. 3, 01062 Dresden, Germany
Search for more papers by this authorAbstract
Multi-crystalline Si (mc-Si) solar cells subjected to carrier-induced efficiency degradation at elevated temperatures are studied using deep-level transient spectroscopy (DLTS), capacitance-voltage, and electroluminescence (EL) measurements. Commercially available passivated emitter and rear cell (PERC) mc-Si solar cells are investigated after short annealing in the dark (at T = 200 °C for 20 min), after degradation by a constant forward current at 70 °C, and after regeneration annealing at 200 °C for 20 min. The degradation is detected in situ by EL imaging of the surface of the cell. Several n+p mesa-diodes, selectively fabricated on the front surface of the solar cell, allow the characterization of locations with various levels of degradation and density of extended defects. The degree of the degradation correlates with the local active boron concentration. At all stages, traps associated with extended defects (i.e., dislocations, grain boundaries, precipitates, etc.) are detected by DLTS, and these traps are not affected by changes in the degree of degradation. Two minority-carrier traps with energy level positions in the bandgap at Ec −0.19 eV and Ec −0.34 eV are detected only in the degraded solar cells in concentrations that correlate with the local degree of cell degradation.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1A. W. Blakers, A. Wang, A. M. Milne, J. H. Zhao, M. A. Green, Appl. Phys. Lett. 1989, 55, 1363.
- 2https://itrpv.vdma.org (accessed: June 2019).
- 3K. Ramspeck, S. Zimmermann, H. Nagel, Y. Gassenbauer, B. Birkmann, A. Seidi, in Proc. 27th European Photovoltaic Solar Energy Conf. 2012, Frankfurt, WIP, Munich, Germany, p. 861.
- 4J. Lindroos, H. Savin, Sol. Energy Mater. Sol. Cells 2016, 147, 115.
- 5F. Kersten, P. Engelhart, H.-C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, M. Bartzsch, A. Szpeth, K. Petter, J. Heitmann, J. W. Müller, Sol. Energy Mater. Sol. Cells 2015, 142, 83.
- 6T. H. Fung, M. Kim, D. Chen, C. E. Chan, B. J. Hallam, R. Chen, D. N. R. Payne, A. Ciesla, S. R. Wenham, M. D. Abbott, Sol. Energy Mater. Sol. Cells 2018, 187, 194.
- 7D. Bredemeier, D. Walter, S. Herlufsen, J. Schmidt, AIP Adv. 2016, 6, 035119.
- 8M. Selinger, W. Kwapil, F. Schindler, K. Krauß, F. Fertig, B. Michl, W. Warta, M. C. Schubert, Energy Procedia 2016, 92, 867.
- 9R. Eberle, W. Kwapil, F. Schindler, M. C. Schubert, S. W. Glunz, Phys. Status Solidi RRL 2016, 10, 861.
- 10C. E. Chan, D. N. R. Payne, B. J. Hallam, M. D. Abbott, T. H. Fung, A. M. Wenham, B. S. Tjahjono, S. R. Wenham, IEEE J. Photovoltaics 2016, 6, 1473.
- 11K. Nakayashiki, J. Hofstetter, A. E. Morishige, T.-T. A. Li, D. B. Needleman, M. A. Jensen, T. Buonassisi, IEEE J. Photovoltaics 2016, 6, 860.
- 12F. Kersten, J. Heitmann, J. W. Müller, Energy Procedia 2016, 92, 828.
- 13C Vargas, Y. Zhu, G. Coletti, C. Chan, D. Payne, M. Jensen, Z. Hameiri, Appl. Phys. Lett. 2017, 110, 092106.
- 14D. Bredemeier, D. C. Walter, J. Schmidt, Solar RRL 2018, 2, 1700159.
- 15A. E. Morishige, M. A. Jensen, D. B. Needleman, K. Nakayashiki, J. Hofstetter, T.-T. A. Li, T. Buonassisi, IEEE J. Photovoltaics 2016, 6, 1466.
- 16D. Bredemeier, D. Walter, S. Herlufsen, J. Schmidt, Energy Procedia 2016, 92, 773.
- 17T. Niewelt, F. Schindler, W. Kwapil, R. Eberle, J. Schön, M. C. Schubert, Prog. Photovoltaics Res. Appl. 2018, 26, 533.
- 18C. Vargas, G. Coletti, C. Chan, D. Payne, Z. Hameiri, Sol. Energy Mater. Sol. Cells 2019, 189, 166.
- 19F. Fertig, R. Lantzsch, A. Mohr, M. Schaper, M. Bartzsch, D. Wissen, F. Kersten, A. Mette, S. Peters, A. Eidner, J. Cieslak, K. Duncker, M. Junghänel, E. Jarzembowski, M. Kauert, B. Faulwetter-Quandt, D. Meißner, B. Reiche, S. Geißler, S. Hörnlein, C. Kle, Energy Procedia 2017, 124, 338.
- 20D. Sperber, A. Graf, A. Heilemann, A. Herguth, G. Hahn, Energy Procedia 2017, 124, 794.
- 21N. E. Grant, F. E. Rougieux, D. Macdonald, J. Bullock, Y. Wan, J. Appl. Phys. 2015, 117, 055711.
- 22N. E. Grant, V. P. Markevich, J. Mullins, A. R. Peaker, F. Rougieux, D. Macdonald, J. D. Murphy, Phys. Status Solidi A 2016, 213, 2844.
- 23N. E. Grant, V. P. Markevich, J. Mullins, A. R. Peaker, F. Rougieux, D. Macdonald, Phys. Status Solidi RRL 2016, 10, 443.
- 24T. Niewelt, M. Selinger, N. E. Grant, W. Kwapil, J. D. Murphy, M. C. Schubert, J. Appl. Phys. 2017, 121, 184702.
- 25J. Mullins, V. P. Markevich, M. Vaqueiro-Contreras, N. E. Grant, L. Jensen, J. Jabłoński, J. D. Murphy, M. P. Halsall, A. R. Peaker, J. Appl. Phys. 2018, 124, 035701.
- 26T. Mchedlidze, J. Weber, N. V. Abrosimov, H. Riemann, Phys. Status Solidi A 2017, 214, 1700238.
10.1002/pssa.201700238 Google Scholar
- 27T. Luka, M Turek, C Hagendorf, Sol. Energy Mater. Sol. Cells 2018, 187, 194.
- 28T. Mchedlidze, M. A. Md, A. Herguth, J. Weber, Phys. Staus Solidi A 2019, doi.org/10.1002/pssa.201800918.
- 29T. Mchedlidze, M. Nacke, E. Hieckmann, J. Weber, J. Appl. Phys. 2014, 115, 012006.
- 30T. Mchedlidze, J. Weber, Phys. Status Solidi RRL 2015, 9, 108.
- 31A. W. Blakers, A. Wang, A. M. Milne, J. H. Zhao, M. A. Green, Appl. Phys. Lett. 1989, 55, 1363.
- 32T. Mchedlidze, L. Scheffler, J. Weber, M. Herms, J. Neusel, V. Osinniy, C. Möller, K. Lauer, Appl. Phys. Lett. 2013, 103, 013901.
- 33G. L. Miller, D. V. Lang, L. C. Kimerling, Annu. Rev. Mater. Sci. 1977, 7, 377.
- 34A. R. Peaker, V. P. Markevich, J. Coutinho, J. Appl. Phys. 2018, 123, 161559.
- 35L. Dobaczewski, A. R. Peaker, K. Bonde Nielsen, J. Appl. Phys. 2004, 96, 4689.
- 36W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel, M. Seiht, Phys. Rev. B 1995, 52, 13726.
- 37M. Trushin, PhD Thesis, Brandenburgischen Technischen Universität, Cottbus, Germany 2011, http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus-22841.
- 38O. F. Vyvenko, M. Kittler, W. Seifert, J. Appl. Phys. 2004, 96, 6425.
- 39V. V. Kveder Yu. A. Osipyan, W. Schröter, G. Zoth, Phys. Status Solidi A 1982, 72, 701.
10.1002/pssa.2210720233 Google Scholar
- 40T. Mchedlidze, M. Kittler, J. Appl. Phys. 2012, 111, 053706.
- 41D. Sperber, A. Heilemann, A. Herguth, G. Hahn, IEEE J. Photovoltaics 2017, 7, 463.
- 42S. Wasmer, J. Greulich, H. Hoeffler, N. Woehrle, M. Demant, F. Fertig, S. Rein IEEE J. Photovoltaics 2017, 7, 118.
- 43B. Mitchell, T. Trupke, J. W. Weber, J. Nyhus, J. Appl. Phys. 2011, 109, 083111.
- 44B. Mitchell, J. W. Weber, M. Juhl, D. Macdonald, T. Trupke, Solid State Phenomena 2014, 205–206, 118.
10.4028/www.scientific.net/SSP.205-206.118 Google Scholar
- 45B. Mitchell, J. W. Weber, D. Walter, D. Macdonald, T. Trupke, J. Appl. Phys. 2012, 112, 063116.
- 46S. Y. Lim, M. Forster, X. Zhang, J. Holtkamp, M. C. Schubert, A. Cuevas, D. Macdonald, IEEE J. Photovoltaics 2013, 3, 649.
- 47V. Y. Lazebnykh, A. S. Mysovsky, J. Appl. Phys. 2015, 118, 135704.
- 48H. T. Nguyen, S. Mokkapati, D. L. Macdonald, IEEE J. Photovoltaics 2017, 7, 598.
- 49L. J. Geerligs, D. Macdonald, Prog. Photovoltaics: Res. Appl. 2004, 12, 309.
- 50A. V. Sachenko, V. P. Kostylyov, M. V. Gerasymenko, R. M. Korkishko, M. R. Kulish, M. I. Slipchenko, I. O. Sokolovskyi, V. V. Chernenko, Semicond. Phys., Quantum Electron. Optoelectron. 2016, 19, 67. DOI: 10.15407/spqeo19.01.067.
- 51M. Stutzmann, Phys. Rev. B 1987, 35, 5921.
- 52C. P. Herrero, M. Stutzmann, A. Breitschwerdt, Phys. Rev. B 1991, 43, 1555.
- 53P. Sana, A. Rohatgi, J. P. Kalejs, R. O. Bell, Appl. Phys. Lett. 1994, 64, 97.
- 54A. Aberle, Sol. Energy Mater. Sol. Cells 2001, 65, 239.
- 55S. H. Lee, M. F. Hopal, D. W. Lee, S. H. Lee, Mater. Sci. Semicond. Process. 2018, 79, 66.
- 56D. Yonq-Chanq, Z. Yu-Fenq, Q. Guo-Gang, W. Shi-Fu, Solid State Commun. 1985, 55, 501.
10.1016/0038-1098(85)90321-7 Google Scholar
- 57T. Zundel, J. Weber, Phys. Rev. B 1991, 43, 4361.
- 58T. Luka, S. Großer, C. Hagendorf, K. Ramspeck, M. Turek, Sol. Energy Mater. Sol. Cells 2016, 158, 43.
- 59T. Luka, M. Turek, S. Großer, C. Hagendorf, in Proc. 33rd European Photovoltaic Solar Energy Conf. and Exhibition, WIP Renewable Energies, München, Germany 2017, p. 413. DOI: 10.4229/eupvsec20172017-2co.11.2.
10.4229/eupvsec20172017-2co.11.2 Google Scholar
- 60K. Krauss, F. Fertig, D. Menzel, S. Rein, Energy Procedia 2015, 77, 599.
- 61J. Lindroos, A. Zuschlag, J. Carstensen, G. Hahn, AIP Conf. Proc. 2018, 1999, 130013.
10.1063/1.5049332 Google Scholar
- 62D. Bredemeier, D. C. Walter, J. Schmidt, AIP Conf. Proc. 2018, 1999, 1300001.
- 63T. Luka, M. Turek, C. Kranert, S. Großer, C. Hagendorf, Energy Procedia 2017, 124, 759.
- 64A. A. Istratov, E. R. Weber, J. Electrochem. Soc. 2002, 149, G21.
- 65N. Yarykin, J. Weber, Phys. Status Sol. C 2017, 14, 1600267.
- 66T. Mchedlidze, W. Seifert, M. Kittler, A. T. Blumenau, B. Birkmann, T. Mono, M. Müller, J. Appl. Phys. 2012, 111, 073504.