pH-responsive phenylboronic acid-modified diamond particles: Switch in carbohydrate capture ability triggers modulation of physicochemical and lectin-recognition properties
Manakamana Khanal
Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille1, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
Search for more papers by this authorAlexandre Barras
Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille1, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
Search for more papers by this authorAloysius Siriwardena
Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, UMR CNRS 7378, Université de Picardie Jules Vernes, 33 rue saint Leu, 80039 Amiens, France
Deceased.Search for more papers by this authorRabah Boukherroub
Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille1, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
Search for more papers by this authorCorresponding Author
Sabine Szunerits
Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille1, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
Corresponding author: e-mail [email protected], Phone: +33 3 62 53 17 25, Fax: +33 3 62 53
Search for more papers by this authorManakamana Khanal
Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille1, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
Search for more papers by this authorAlexandre Barras
Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille1, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
Search for more papers by this authorAloysius Siriwardena
Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, UMR CNRS 7378, Université de Picardie Jules Vernes, 33 rue saint Leu, 80039 Amiens, France
Deceased.Search for more papers by this authorRabah Boukherroub
Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille1, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
Search for more papers by this authorCorresponding Author
Sabine Szunerits
Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille1, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
Corresponding author: e-mail [email protected], Phone: +33 3 62 53 17 25, Fax: +33 3 62 53
Search for more papers by this authorAbstract
Nanodiamonds (NDs) are new carbon-based materials that have recently been demonstrated to hold promise in a number of biomedical applications. The production of stable colloidal solutions from ND particles obtained through detonation still remains a challenge, as these particles have a strong tendency to form large aggregates. Herein, is described a 4-aminophenylboronic acid-modified ND (ND-BA) system that can either disperse or aggregate in aqueous solution, in the presence of an appropriate monosaccharide and in response to an external pH trigger. At pH = 8.4, the ND-BA forms stable colloidal solutions when mannose is present, as a consequence of their ability to sequester the monosaccharide through the formation of sugar boronic ester complexes. A decrease in the pH to 4 triggers the disruption of the boronic acid ester bonds and results in mannose-release thereby inducing aggregation of the ND-BA particles. The aggregation–dispersion process is seen to be completely reversible and effectively allows control of the physiochemical properties of the ND-BA–glycan couple through an external pH stimulus. Moreover, the mannose-saturated ND-BA particles are shown to interact selectively with appropriate lectins and this recognition demonstrated to be effectively switched off at low pH values.
References
- 1 A. Barras, F. A. Martin, O. Bande, J. S. Baumann, J.-M. Ghigo, R. Boukherroub, C. Beloin, A. Siriwardena, and S. Szunerits, Nanoscale 5, 2307 ( 2013).
- 2 M. Chen, X.-Q. Zhang, H. B. Man, R. Lam, E. K. Chow, and D. Ho, J. Phys. Chem. Lett. 1, 3167 ( 2010).
- 3 M. Hartmann, P. Betz, Y. Sun, S. H. Gorb, T. K. Lindhorst, and A. Krüger, Chem. Eur. J. 18, 6485 ( 2012).
- 4 M. Khanal, T. Vausselin, A. Barras, O. Bande, K. Turcheniuk, M. Benazza, V. Zaitsev, C. M. Teodurescu, R. Boukherroub, A. Siriwardena, J. Dubuisson, and S. Szunerits, ACS Appl. Mater. Interfaces 5, 12488 ( 2013).
- 5 R. Martin, M. Alvaro, J. R. Herance, and H. Garcia, ACS Nano 4, 65 ( 2011).
- 6 V. N. Mochalin, O. A. Shenderova, D. Ho, and Y. Gogotsi, Nature Nanotechnol. 7, 11 ( 2012).
- 7 S. Navalon, R. Martin, M. Alvaro, and H. Garcia, Angew. Chem. Int. Ed. 49, 8403 ( 2010).
- 8 S. Vial, C. Mansuy, S. Sagan, T. Irinopoulou, F. Burlina, J.-P. Boudou, G. Chassaing, and S. Lavielle, ChemBioChem 9, 2133 ( 2008).
- 9 X. Q. Zhang, S. Wang, C.-C. Fu, L. Z. Feng, Y. Ji, L. Tao, S. Li, and Y. Wei, Polym. Chem. 3, 2716 ( 2012).
- 10 E. Perevedentseva, D. Peer, V. Uvarov, B. Zousman, and O. Levinson, J. Nanosci. Nanotechnol. 15, 1045 ( 2015).
- 11 J. R. Bertrand, C. Pioche-Durieu, P. T. Ayala, C. P. Malvy, E. Le Cam, F. Treussart, and J. C. Arnault, Biomaterials 45, 93 ( 2015).
- 12 O. A. Shenderova and G. E. McGuire, Biointerphases 5, 030802 ( 2015).
- 13 R. Grall, H. Girard, L. Saad, T. Petit, C. Gesset, M. Combis-Schlumberger, V. Paget, J. Delic, J. C. Arnault, and S. Chevillard, Biomaterials 61, 290 ( 2015).
- 14 A. Barras, J. Lyskawa, S. Szunerits, P. Woisel, and R. Boukherroub, Langmuir 27, 12451 ( 2011).
- 15 A. Barras, S. Szunerits, L. Marcon, N. Monfilliette-Dupont, and R. Boukherroub, Langmuir 26, 13168 ( 2010).
- 16 Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, Nature Nanotechnol. 3, 284 ( 2008).
- 17 S. A. Dahoumane, M. N. Nguyen, A. Thorel, J. P. Boudou, M. M. Chehimi, and C. Mangeney, Langmuir 25, 9633 ( 2009).
- 18 A. Krüger, Angew. Chem. Int. Ed. 45, 6426 ( 2006).
- 19 A. Krüger, Chem. Eur. J. 14, 1382 ( 2008).
- 20 Y. Liang, M. Ozawa, and A. Krueger, ACS Nano 3, 2288 ( 2009).
- 21 S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, J. Am. Chem. Soc. 127, 17604 ( 2005).
- 22 V. N. Mochalin and Y. Gogotsi, J. Am. Chem. Soc. 131, 4594 ( 2009).
- 23 C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Taso, H.-C. Chang, and W. Fann, Proc. Natl. Acad. Sci. USA 104, 727 ( 2007).
- 24 Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, Nature Nanotechnol. 3, 284 ( 2008).
- 25 Y. Y. Hui, C.-L. Cheng, and H.-C. Chang, J. Phys. D, Appl. Phys. 43, 374021 ( 2010).
- 26 V. V. Danilenko, Phys. Solid State 46, 595 ( 2004).
- 27 A. Krüger, F. Katoako, M. Ozawa, T. Fujino, Y. Suzuki, A. E. Aleksesnkii, A. Y. Vul, and E. Osawa, Carbon 43, 1722 ( 2005).
- 28 A. E. Aleksenski, V. Y. Osipov, A. T. Dideikin, A. Y. Vul', G. J. Adriaenssens, and V. V. Afanas'ev, Tech. Phys. Lett. 26, 819 ( 2000).
- 29 A. S. Barnard and E. Osawa, Nanoscale 6, 1188 ( 2014).
- 30 A. Krüger, M. Ozawa, G. Jarre, Y. Liand, J. Stegk, and L. Lu, Phys. Status Solidi A 204, 2881 ( 2007).
- 31 S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, J. Am. Chem. Soc. 128, 11635 ( 2006).
- 32 E. Ozawa, Diam. Relat. Mater. 16, 2018 ( 2006).
- 33 O. A. Shenderova, A. Koscheev, N. Zaripov, I. Petrov, Y. Skryabin, P. Detkov, S. Turner, and G. Van Tendeloo, J. Phys. Chem. C 115, 9827 ( 2011).
- 34 T. Petit, H. A. Girard, A. Trouvé, I. Batonneau-Gener, P. Bergonzo, and J.-C. Arnault, Nanoscale 5, 8958 ( 2013).
- 35 O. A. Williams, J. Hees, C. Diker, W. Jager, and C. E. Nebel, ACS Nano 4, 4824 ( 2010).
- 36 A. Pentecost, S. Gour, V. Mochalin, I. Knoke, and Y. Gogotsi, ACS Appl. Mater. Interfaces 2, 3289 ( 2010).
- 37 M. Khanal, V. Turcheniuk, A. Barras, R. Rosay, O. Bande, A. Siriwardena, V. Zaitsev, G.-H. Pan, R. Boukherroub, and S. Szunerits, Langmuir 31, 3926 ( 2015).
- 38 C. Fessele, S. Wachtler, V. Chandrasekaran, C. Stiller, T. K. Lindhorst, and A. Krüger, Eur. J. Org. Chem. 25, 5519 ( 2015).
- 39 T. D. James, K. R. A. Samankumara Sandanayake, and S. Shinkai, Angew. Chem. Int. Ed. 35, 1910 ( 1996).
- 40 W. S. Yeap, Y. Y. Tan, and K. P. Loh, Anal. Chem. 80, 4659 ( 2008).
- 41 Y. Wang, Y. Xiao, T. T. Y. Tan, and S.-C. Ng, Tetrahedron Lett. 49, 5190 ( 2008).
- 42 A. C. Gouget-Laemmel, J. Yang, M. A. Lodhi, A. Siriwardena, D. Aureau, R. Boukherroub, J.-N. Chazalviel, F. Ozanam, and S. Szunerits, J. Phys. Chem. C 117, 368 ( 2013).
- 43 X. Wang, O. Ramstrom, and M. Yan, J. Mater. Chem. 19, 8944 ( 2009).
- 44 M. Durka, K. Buffet, J. Iehl, M. Holler, J. F. Nierengarten, J. Taganna, J. Bouckaert, and S. P. Vincent, Chem. Commun. 47, 1321 ( 2011).
- 45 K. Purtov, A. Petunin, E. Inzhevatkin, A. Burov, N. Ronzhin, A. Puzyr, and V. Bondar, J. Nanosci. Nanotechnol. 15, 1070 ( 2015).
- 46 H.-D. Wang, C. H. Niu, Q. Yang, and I. Badea, Nanotechnology 22, 14703 ( 2011).