Conformation of myelin basic protein bound to phosphatidylinositol membrane characterized by vacuum-ultraviolet circular-dichroism spectroscopy and molecular-dynamics simulations
Munehiro Kumashiro
Department of Physical Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
Search for more papers by this authorYudai Izumi
Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
Search for more papers by this authorCorresponding Author
Koichi Matsuo
Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
Correspondence
Koichi Matsuo, Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
Email: [email protected]
Search for more papers by this authorMunehiro Kumashiro
Department of Physical Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
Search for more papers by this authorYudai Izumi
Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
Search for more papers by this authorCorresponding Author
Koichi Matsuo
Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
Correspondence
Koichi Matsuo, Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
Email: [email protected]
Search for more papers by this authorFunding information: Japan Society for the Promotion of Science, Grant/Award Numbers: JP15K07028, JP19K06587
Abstract
The 18.5-kDa isoform of myelin basic protein (MBP) interacts with the membrane surface of the myelin sheath to construct its compact multilamellar structure. This study characterized the conformation of MBP in the membrane by measuring the vacuum-ultraviolet circular-dichroism (VUVCD) spectra of MBP in the bilayer liposome comprising the following essential lipid constituents of the myelin sheath: phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). The spectra of MBP exhibited the characteristic peaks of the helix structure in the presence of PI liposome, and the intensity increased markedly in the presence of PIP and PIP2 liposomes to show an isodichroic point. This suggests that the amount of the membrane-bound conformation of MBP enhanced due to the increased number of negative net charges on the liposome surfaces. Secondary-structure analysis revealed that MBP in the membrane comprised approximately 40% helix contents and eight helix segments. Molecular-dynamics (MD) simulations of the eight segments were conducted for 250 ns in the presence of PI membrane, which predicted two amphiphilic and three nonamphiphilic helices as the membrane-interaction sites. Further analysis of the distances of the amino-acid residues in each segment from the phosphate group suggested that the nonamphiphilic helices interact with the membrane surface electrostatically, while the amphiphilic ones invade the inside of the membrane to produce electrostatic and hydrophobic interactions. These results show that MBP can interact with the PI membrane via amphiphilic and nonamphiphilic helices under the control of a delicate balance between electrostatic and hydrophobic interactions.
CONFLICT OF INTEREST
The authors have no conflicts of interest to declare.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
prot26146-sup-0001-Supinfo.docxWord 2007 document , 3.3 MB | Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Aggarwal S, Yurlova L, Simons M. Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol. 2011; 21(10): 585-593.
- 2Stassart RM, Möbius W, Nave KA, Edgar JM. The axon-myelin unit in development and degenerative disease. Front Neurosci. 2018; 12 :467.
- 3Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the central nervous system: structure, function, and pathology. Physiol Rev. 2019; 99(3): 1381-1431.
- 4Yang L, Tan D, Piao H. Myelin basic protein citrullination in multiple sclerosis: a potential therapeutic target for the pathology. Neurochem Res. 2016; 41(8): 1845-1856.
- 5Compston A, Coles A. Multiple sclerosis. Lancet. 2008; 372(9648): 1502-1517.
- 6Boggs JM. Myelin basic protein: a multifunctional protein. Cell Mol Life Sci. 2006; 63(17): 1945-1961.
- 7Han H, Myllykoski M, Ruskamo S, Wang C, Kursula P. Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules. Biofactors. 2013; 39(3): 233-241.
- 8Gow A, Smith R. The thermodynamically stable state of myelin basic protein in aqueous solution is a flexible coil. Biochem J. 1989; 257(2): 535-540.
- 9Vassall KA, Bamm VV, Harauz G. MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J. 2015; 472(1): 17-32.
- 10Harauz G, Ladizhansky V, Boggs JM. Structural polymorphism and multifunctionality of myelin basic protein. Biochemistry. 2009; 48(34): 8094-8104.
- 11Stadler AM, Stingaciu L, Radulescu A, et al. Internal nanosecond dynamics in the intrinsically disordered myelin basic protein. J Am Chem Soc. 2014; 136(19): 6987-6994.
- 12Vassall KA, Jenkins AD, Bamm VV, Harauz G. Thermodynamic analysis of the disorder-to-α-helical transition of 18.5-kDa myelin basic protein reveals an equilibrium intermediate representing the most compact conformation. J Mol Biol. 2015; 427(10): 1977-1992.
- 13Bamm VV, Avila M. De, Smith GST, Ahmed MAM, Harauz G. structured functional domains of myelin basic protein: cross talk between Actin polymerization and Ca 2+−dependent calmodulin interaction. Biophys J. 2011; 101(5): 1248-1256.
- 14Libich DS, Harauz G. Backbone dynamics of the 18.5 kDa isoform of myelin basic protein reveals transient α-helices and a calmodulin-binding site. Biophys J. 2008; 94(12): 4847-4866.
- 15Raasakka A, Ruskamo S, Kowal J, et al. Membrane association landscape of myelin basic protein portrays formation of the myelin major dense line. Sci Rep. 2017; 7(1): 1-18.
- 16Min Y, Kristiansen K, Boggs JM, Husted C, Zasadzinski JA, Israelachvili J. Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein. Proc Natl Acad Sci U S A. 2009; 106(9): 3154-3159.
- 17Widder K, Träger J, Kerth A, Harauz G, Hinderberger D. Interaction of myelin basic protein with myelin-like lipid monolayers at air-water interface. Langmuir. 2018; 34(21): 6095-6108.
- 18ter Beest MBA, Hoekstra D. Interaction of myelin basic protein with artificial membranes: parameters governing binding, aggregation and dissociation. Eur J Biochem. 1993; 211(3): 689-696.
- 19Boggs JM, Stamp D, Moscarello MA. Effect of pH and fatty acid chain length on the interaction of myelin basic protein with phosphatidylglycerol. Biochemistry. 1982; 21(6): 1208-1214.
- 20Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem. 2013; 125(3): 334-361.
- 21Woody RW. On the analysis of membrane protein circular dichroism spectra. Protein Sci. 2004; 13: 100-112.
- 22Miles AJ, Wallace BA. Circular dichroism spectroscopy of membrane proteins. Chem Soc Rev. 2016; 45(18): 4859-4872.
- 23Matsuo K, Kumashiro M, Gekko K. Characterization of the mechanism of interaction between α1-acid glycoprotein and lipid membranes by vacuum-ultraviolet circular-dichroism spectroscopy. Chirality. 2020; 32: 594-604.
- 24Matsuo K, Yonehara R, Gekko K. Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem. 2004; 135(3): 405-411.
- 25Matsuo K, Yonehara R, Gekko K. Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem. 2005; 138(1): 79-88.
- 26Matsuo K, Watanabe H, Gekko K. Improved sequence-based prediction of protein secondary structures by combining vacuum-ultraviolet circular dichroism spectroscopy with neural network. Proteins Struct Funct Genet. 2008; 73(1): 104-112.
- 27Matsuo K, Maki Y, Namatame H, Taniguchi M, Gekko K. Conformation of membrane-bound proteins revealed by vacuum-ultraviolet circular-dichroism and linear-dichroism spectroscopy. Proteins Struct Funct Bioinforma. 2016; 84(3): 349-359.
- 28Yagi-Utsumi M, Matsuo K, Yanagisawa K, Gekko K, Kato K. Spectroscopic characterization of intermolecular interaction of amyloid β promoted on GM1 micelles. Int J Alzheimers Dis. 2011; 2011: 925723.
- 29Nawaz S, Kippert A, Saab AS, et al. Phosphatidylinositol 4,5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. J Neurosci. 2009; 29(15): 4794-4807.
- 30Inouye H, Kirschner DA. Membrane interactions in nerve myelin: II. Determination of surface charge from biochemical data. Biophys J. 1988; 53(2): 247-260.
- 31Musse AA, Gao W, Homchaudhuri L, Boggs JM, Harauz G. Myelin basic protein as a “PI(4,5)P2-modulin”: a new biological function for a major central nervous system protein. Biochemistry. 2008; 47(39): 10372-10382.
- 32Steck AJ, Siegrist HP, Zahler P, Herschkowitz NN. Lipid-protein interactions with native and modified myelin basic protein. BBA-Biomembranes. 1976; 455(2): 343-352.
- 33Ishiyama N, Bates IR, Hill CM, et al. The effects of deimination of myelin basic protein on structures formed by its interaction with phosphoinositide-containing lipid monolayers. J Struct Biol. 2001; 136(1): 30-45.
- 34Marsh D. Handbook of Lipid Bilayers. FL, USA: Boca Raton; 2013.
10.1201/b11712 Google Scholar
- 35Matsuo K, Namatame H, Taniguchi M, Gekko K. Membrane-induced conformational change of α1-acid glycoprotein characterized by vacuum-ultraviolet circular dichroism spectroscopy. Biochemistry. 2009; 48(38): 9103-9111.
- 36Higgins CD, Malashkevich VN, Almo SC, Lai JR. Influence of a heptad repeat stutter on the pH-dependent conformational behavior of the central coiled-coil from influenza hemagglutinin HA2. Proteins Struct Funct Bioinforma. 2014; 82(9): 2220-2228.
- 37Bañuelos S, Muga A. Structural requirements for the association of native and partially folded conformations of α-lactalbumin with model membranes. Biochemistry. 1996; 35(13): 3892-3898.
- 38Zhang X, Keiderling TA. Lipid-induced conformational transitions of β-lactoglobulin. Biochemistry. 2006; 45(27): 8444-8452.
- 39Hope MJ, Bally MB, Webb G, Cullis PR. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. BBA-Biomembranes. 1985; 812(1): 55-65.
- 40Matsuo K, Gekko K. Construction of a synchrotron-radiation vacuum-ultraviolet circular-dichroism spectrophotometer and its application to the structural analysis of biomolecules. Bull Chem Soc Jpn. 2013; 86(6): 675-689.
- 41Matsuo K, Sakai K, Matsushima Y, Fukuyama T, Gekko K. Optical cell with a temperature-control unit for a vacuum-ultraviolet circular dichroism spectrophotometer. Anal Sci. 2003; 19(1): 129-132.
- 42Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000; 287(2): 252-260.
- 43Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999; 292(2): 195-202.
- 44Sunhwan J, Taehoon K, Vidyashankara IG, Wonpil I. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008; 29: 1859-1865.
- 45Qi Y, Cheng X, Lee J, et al. CHARMM-GUI HMMM builder for membrane simulations with the highly mobile membrane-mimetic model. Biophys J. 2015; 109(10): 2012-2022.
- 46Monje-Galvan V, Warburton L, Klauda JB. Setting up all-atom molecular dynamics simulations to study the interactions of peripheral membrane proteins with model lipid bilayers. Methods Mol Biol. 1949; 2019: 325-339.
- 47Wildermuth KD, Monje-Galvan V, Warburton LM, Klauda JB. Effect of membrane lipid packing on stable binding of the ALPS peptide. J Chem Theory Comput. 2019; 15(2): 1418-1429.
- 48Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996; 14(1): 33-38.
- 49Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012; 40(D1): D370-D376.
- 50Ulmschneider MB, Ulmschneider JP, Schiller N, Wallace BA, Von Heijne G, White SH. Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion. Nat Commun. 2014; 5: 4863.
- 51Abraham MJ, Murtola T, Schulz R, et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1–2: 19-25.
10.1016/j.softx.2015.06.001 Google Scholar
- 52Huang J, Rauscher S, Nawrocki G, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2016; 14(1): 71-73.
- 53Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984; 81(1): 511-519.
- 54Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985; 31(3): 1695-1697.
- 55Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys. 1993; 98(12): 10089-10092.
- 56Hess B. P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput. 2008; 4(1): 116-122.
- 57Greenfield N, Fasman GD. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969; 8(10): 4108-4116.
- 58Woody RW. Circular dichroism of intrinsically disordered proteins, VN In Uversky S, eds Longhi Instrum Anal Intrinsically Disord Proteins Assess Struct Conform. New Jersey: John Wiley & Sons; 2010; 303-322.
10.1002/9780470602614.ch10 Google Scholar
- 59Polverini E, Fasano A, Zito F, Riccio P, Cavatorta P. Conformation of bovine myelin basic protein purified with bound lipids. Eur Biophys J. 1999; 28(4): 351-355.
- 60Haas H, Oliveira CLP, Torriani IL, et al. Small angle X-ray scattering from lipid-bound myelin basic protein in solution. Biophys J. 2004; 86(1 I): 455-460.
- 61Bates IR, Feix JB, Boggs JM, Harauz G. An Immunodominant epitope of myelin basic protein is an amphipathic α-helix. J Biol Chem. 2004; 279(7): 5757-5764.
- 62Bates IR, Libich DS, Wood DD, Moscarello MA, Harauz G. An Arg/Lys → Gln mutant of recombinant murine myelin basic protein as a mimic of the deiminated form implicated in multiple sclerosis. Protein Expr Purif. 2002; 25(2): 330-341.
- 63Randall CS, Zand R. Spectroscopic assessment of secondary and tertiary structure in myelin basic protein. Biochemistry. 1985; 24(8): 1998-2004.
- 64Matsuo K, Sakurada Y, Yonehara R, Kataoka M, Gekko K. Secondary-structure analysis of denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy. Biophys J. 2007; 92(11): 4088-4096.
- 65Wang C, Neugebauer U, Bürck J, et al. Charge isomers of myelin basic protein: structure and interactions with membranes, nucleotide analogues, and calmodulin. PLoS One. 2011; 6(5): e19915.
- 66Monje-Galvan V, Klauda JB. Peripheral membrane proteins: tying the knot between experiment and computation. Biochim Biophys Acta - Biomembr. 2016; 1858(7): 1584-1593.
- 67Ohkubo YZ, Pogorelov TV, Arcario MJ, Christensen GA, Tajkhorshid E. Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophys J. 2012; 102(9): 2130-2139.
- 68Baylon JL, Tajkhorshid E. Capturing spontaneous membrane insertion of the influenza virus hemagglutinin fusion peptide. J Phys Chem B. 2015; 119(25): 7882-7893.
- 69Elmore DE. Molecular dynamics simulation of a phosphatidylglycerol membrane. FEBS Lett. 2006; 580(1): 144-148.
- 70Perdih A, Choudhury A, Župerl Š, et al. Structural analysis of a peptide fragment of transmembrane transporter protein bilitranslocase. PLoS One. 2012; 7(6): e38967.
- 71Polverini E, Coll EP, Tieleman DP, Harauz G. Conformational choreography of a molecular switch region in myelin basic protein-molecular dynamics shows induced folding and secondary structure type conversion upon threonyl phosphorylation in both aqueous and membrane-associated environments. Biochim Biophys Acta - Biomembr. 2011; 1808(3): 674-683.
- 72Homchaudhuri L, Avila M. De, Nilsson SB, Bessonov K, Smith GST, Bamm V V., Musse AA, Harauz G, Boggs JM. Secondary structure and solvent accessibility of a calmodulin-binding C-terminal segment of membrane-associated myelin basic protein. Biochemistry. 2010; 49(41): 8955-8966.