Co-evolutionary analysis implies auxiliary functions of HSP110 in Plasmodium falciparum
Corresponding Author
Deeksha Bhartiya
Institute of Cytology and Preventive Oncology (ICMR), Noida, 201301 Uttar Pradesh, India
Correspondence to. Deeksha Bhartiya, Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector 39, Noida 201301, Uttar Pradesh, India. E-mail: [email protected] or Niti Kumar, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India. E-mail: [email protected]Search for more papers by this authorBalasubramanian Chandramouli
Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, I-56126 Italy
Search for more papers by this authorCorresponding Author
Niti Kumar
CSIR-Central Drug Research Institute, Lucknow, 226031 Uttar Pradesh, India
Correspondence to. Deeksha Bhartiya, Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector 39, Noida 201301, Uttar Pradesh, India. E-mail: [email protected] or Niti Kumar, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India. E-mail: [email protected]Search for more papers by this authorCorresponding Author
Deeksha Bhartiya
Institute of Cytology and Preventive Oncology (ICMR), Noida, 201301 Uttar Pradesh, India
Correspondence to. Deeksha Bhartiya, Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector 39, Noida 201301, Uttar Pradesh, India. E-mail: [email protected] or Niti Kumar, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India. E-mail: [email protected]Search for more papers by this authorBalasubramanian Chandramouli
Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, I-56126 Italy
Search for more papers by this authorCorresponding Author
Niti Kumar
CSIR-Central Drug Research Institute, Lucknow, 226031 Uttar Pradesh, India
Correspondence to. Deeksha Bhartiya, Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector 39, Noida 201301, Uttar Pradesh, India. E-mail: [email protected] or Niti Kumar, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India. E-mail: [email protected]Search for more papers by this authorABSTRACT
Plasmodium falciparum encounters frequent environmental challenges during its life cycle which makes productive protein folding immensely challenging for its metastable proteome. To identify the important components of protein folding machinery involved in maintaining P. falciparum proteome, we performed a proteome-wide phylogenetic profiling across various species. We found that except HSP110, the parasite lost all other cytosolic nucleotide exchange factors essential for regulating HSP70 which is the centrum of the protein folding network. Evolutionary and structural analysis shows that besides its canonical interaction with HSP70, PfHSP110 has acquired sequence insertions for additional dynamic interactions. Molecular co-evolution profile depicts that the co-evolving proteins of PfHSP110 belong to distinct pathways like genetic variation, DNA repair, fatty acid biosynthesis, protein modification/trafficking, molecular motions, and apoptosis. These proteins exhibit unique physiochemical properties like large size, high iso-electric point, low solubility, and antigenicity, hence require PfHSP110 chaperoning to attain functional state. Co-evolving protein interaction network suggests that PfHSP110 serves as an important hub to coordinate protein quality control, survival, and immune evasion pathways in the parasite. Overall, our findings highlight potential accessory roles of PfHSP110 that may provide survival advantage to the parasite during its lifecycle and febrile conditions. The data also open avenues for experimental validation of auxiliary functions of PfHSP110 and their exploration for design of better antimalarial strategies. Proteins 2015; 83:1513–1525. © 2015 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
prot24842-sup-0001-suppinfodata1.xls96 KB | Supporting Information Data 1. |
prot24842-sup-0002-suppinfodata2.xls3.3 MB | Supporting Information Data 2. |
prot24842-sup-0003-suppinfodata3.xls211 KB | Supporting Information Data 3. |
prot24842-sup-0004-suppinfodata4.xls57.5 KB | Supporting Information Data 4. |
prot24842-sup-0005-suppinfo.pdf2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature 2011; 475: 324–332.
- 2Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 2006; 75: 333–366.
- 3Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 2009; 78: 959–991.
- 4Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature 2002; 415: 673–679.
- 5Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Alonso PL, Collins FH, Duffy PE. Malaria: progress, perils, and prospects for eradication. J Clin Invest 2008; 118: 1266–1276.
- 6Musto H, Caccio S, Rodriguez-Maseda H, Bernardi G. Compositional constraints in the extremely GC-poor genome of Plasmodium falciparum. Mem Inst Oswaldo Cruz 1997; 92: 835–841.
- 7Filisetti D, Theobald-Dietrich A, Mahmoudi N, Rudinger-Thirion J, Candolfi E, Frugier M. Aminoacylation of Plasmodium falciparum tRNA(Asn) and insights in the synthesis of asparagine repeats. J Biol Chem 2013; 288: 36361–36371.
- 8Michelitsch MD, Weissman JS. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci USA 2000; 97: 11910–11915.
- 9Pizzi E, Frontali C. Low-complexity regions in Plasmodium falciparum proteins. Genome Res 2001; 11: 218–229.
- 10Singh GP, Chandra BR, Bhattacharya A, Akhouri RR, Singh SK, Sharma A. Hyper-expansion of asparagines correlates with an abundance of proteins with prion-like domains in Plasmodium falciparum. Mol Biochem Parasitol 2004; 137: 307–319.
- 11Barillas-Mury C, Kumar S. Plasmodium-mosquito interactions: a tale of dangerous liaisons. Cell Microbiol 2005; 7: 1539–1545.
- 12Silvie O, Mota MM, Matuschewski K, Prudencio M. Interactions of the malaria parasite and its mammalian host. Curr Opin Microbiol 2008; 11: 352–359.
- 13Kramer G, Boehringer D, Ban N, Bukau B. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 2009; 16: 589–597.
- 14Sharma SK, De Los Rios P, Goloubinoff P. Probing the different chaperone activities of the bacterial HSP70-HSP40 system using a thermolabile luciferase substrate. Proteins 2011; 79: 1991–1998.
- 15Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 2010; 11: 579–592.
- 16Cheng MY, Hartl FU, Martin J, Pollock RA, Kalousek F, Neupert W, Hallberg EM, Hallberg RL, Horwich AL. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989; 337: 620–625.
- 17Goloubinoff P, Gatenby AA, Lorimer GH. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 1989; 337: 44–47.
- 18Mayer MP, Schroder H, Rudiger S, Paal K, Laufen T, Bukau B. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol 2000; 7: 586–593.
- 19Scheibel T, Neuhofen S, Weikl T, Mayr C, Reinstein J, Vogel PD, Buchner J. ATP-binding properties of human Hsp90. J Biol Chem 1997; 272: 18608–18613.
- 20Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 2013; 14: 630–642.
- 21Zietkiewicz S, Lewandowska A, Stocki P, Liberek K. Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70-Hsp100-dependent disaggregation. J Biol Chem 2006; 281: 7022–7029.
- 22Haslbeck M. sHsps and their role in the chaperone network. Cell Mol Life Sci 2002; 59: 1649–1657.
- 23Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419: 498–511.
- 24Pavithra SR, Kumar R, Tatu U. Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum. PLoS Comput Biol 2007; 3: 1701–1715.
- 25Suthram S, Sittler T, Ideker T. The Plasmodium protein network diverges from those of other eukaryotes. Nature 2005; 438: 108–112.
- 26Date SV, Stoeckert CJ, Jr. Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. Genome Res 2006; 16: 542–549.
- 27Pallavi R, Acharya P, Chandran S, Daily JP, Tatu U. Chaperone expression profiles correlate with distinct physiological states of Plasmodium falciparum in malaria patients. Malar J 2010; 9: 236
- 28Easton DP, Kaneko Y, Subjeck JR. The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 2000; 5: 276–290.
- 29Oh HJ, Chen X, Subjeck JR. Hsp110 protects heat-denatured proteins and confers cellular thermoresistance. J Biol Chem 1997; 272: 31636–31640.
- 30Mandal AK, Gibney PA, Nillegoda NB, Theodoraki MA, Caplan AJ, Morano KA. Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system. Mol Biol Cell 2010; 21: 1439–1448.
- 31Polier S, Dragovic Z, Hartl FU, Bracher A. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 2008; 133: 1068–1079.
- 32Polier S, Hartl FU, Bracher A. Interaction of the Hsp110 molecular chaperones from S. cerevisiae with substrate protein. J Mol Biol 2010; 401: 696–707.
- 33Mattoo RU, Sharma SK, Priya S, Finka A, Goloubinoff P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J Biol Chem 2013; 288: 21399–21411.
- 34Shorter J. The mammalian disaggregase machinery: HSP110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One 2011; 6: e26319.
- 35Makhnevych T, Wong P, Pogoutse O, Vizeacoumar FJ, Greenblatt JF, Emili A, Houry WA. HSP110 is required for spindle length control. J Cell Biol 2012; 198: 623–636.
- 36Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B. Chaperone network in the yeast cytosol: HSP110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J 2006; 25: 2510–2518.
- 37Abrams JL, Verghese J, Gibney PA, Morano KA. Hierarchical functional specificity of cytosolic heat shock protein 70 (Hsp70) nucleotide exchange factors in yeast. J Biol Chem 2014; 289: 13155–13167.
- 38Muralidharan V, Oksman A, Pal P, Lindquist S, Goldberg DE. Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat Commun 2012; 3: 1310.
- 39Enault F, Suhre K, Abergel C, Poirot O, Claverie JM. Annotation of bacterial genomes using improved phylogenomic profiles. Bioinformatics 2003; 19 Suppl 1: i105–i107.
- 40Tabach Y, Billi AC, Hayes GD, Newman MA, Zuk O, Gabel H, Kamath R, Yacoby K, Chapman B, Garcia SM, Borowsky M, Kim JK, Ruvkun G. Identification of small RNA pathway genes using patterns of phylogenetic conservation and divergence. Nature 2013; 493: 694–698.
- 41Dill KA, Ghosh K, Schmit JD. Physical limits of cells and proteomes. Proc Natl Acad Sci USA 2011; 108: 17876–17882.
- 42Zhang J. Protein-length distributions for the three domains of life. Trends Genet 2000; 16: 107–109.
- 43Brocchieri L, Karlin S. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res 2005; 33: 3390–3400.
- 44Tiessen A, Perez-Rodriguez P, Delaye-Arredondo LJ. Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes. BMC Res Notes 2012; 5: 85.
- 45Robertson AD, Murphy KP. Protein Structure and the Energetics of Protein Stability. Chem Rev 1997; 97: 1251–1268.
- 46Brockwell DJ, Radford SE. Intermediates: ubiquitous species on folding energy landscapes? Curr Opin Struct Biol 2007; 17: 30–37.
- 47Honeycutt JD, Thirumalai D. Metastability of the folded states of globular proteins. Proc Natl Acad Sci USA 1990; 87: 3526–3529.
- 48Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, Wellems TE. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 1995; 82: 89–100.
- 49Neafsey DE, Galinsky K, Jiang RH, Young L, Sykes SM, Saif S, Gujja S, Goldberg JM, Young S, Zeng Q, Chapman SB, Dash AP, Anvikar AR, Sutton PL, Birren BW, Escalante AA, Barnwell JW, Carlton JM. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat Genet 2012; 44: 1046–1050.
- 50Sistonen L, Sarge KD, Morimoto RI. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol Cell Biol 1994; 14: 2087–2099.
- 51Ravid T, Hochstrasser M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 2008; 9: 679–690.
- 52McEwan DG, Dikic I. The three musketeers of autophagy: phosphorylation, ubiquitylation and acetylation. Trends Cell Biol 2011; 21: 195–201.
- 53El Bakkouri M, Rathore S, Calmettes C, Wernimont AK, Liu K, Sinha D, Asad M, Jung P, Hui R, Mohmmed A, Houry WA. Structural insights into the inactive subunit of the apicoplast-localized caseinolytic protease complex of Plasmodium falciparum. J Biol Chem 2013; 288: 1022–1031.
- 54Press MO, Li H, Creanza N, Kramer G, Queitsch C, Sourjik V, Borenstein E. Genome-scale co-evolutionary inference identifies functions and clients of bacterial Hsp90. PLoS Genet 2013; 9: e1003631.
- 55de Juan D, Pazos F, Valencia A. Emerging methods in protein co-evolution. Nat Rev Genet 2013; 14: 249–261.
- 56Kann MG, Jothi R, Cherukuri PF, Przytycka TM. Predicting protein domain interactions from coevolution of conserved regions. Proteins 2007; 67: 811–820.
- 57Frech C, Chen N. Genome comparison of human and non-human malaria parasites reveals species subset-specific genes potentially linked to human disease. PLoS Comput Biol 2011; 7: e1002320.
- 58Hrizo SL, Gusarova V, Habiel DM, Goeckeler JL, Fisher EA, Brodsky JL. The HSP110 molecular chaperone stabilizes apolipoprotein B from endoplasmic reticulum-associated degradation (ERAD). J Biol Chem 2007; 282: 32665–32675.
- 59Sadlish H, Rampelt H, Shorter J, Wegrzyn RD, Andreasson C, Lindquist S, Bukau B. Hsp110 chaperones regulate prion formation and propagation in S. cerevisiae by two discrete activities. PLoS One 2008; 3: e1763.
- 60Packschies L, Theyssen H, Buchberger A, Bukau B, Goody RS, Reinstein J. GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism. Biochemistry 1997; 36: 3417–3422.
- 61Deloche O, Georgopoulos C. Purification and biochemical properties of Saccharomyces cerevisiae's Mge1p, the mitochondrial cochaperone of Ssc1p. J Biol Chem 1996; 271: 23960–23966.
- 62Kabbage M, Dickman MB. The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol Life Sci 2008; 65: 1390–1402.
- 63Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU, Bracher A. Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 2005; 17: 367–379.
- 64Gerton JL, DeRisi JL. Mnd1p: an evolutionarily conserved protein required for meiotic recombination. Proc Natl Acad Sci USA 2002; 99: 6895–6900.
- 65Tonkin CJ, Carret CK, Duraisingh MT, Voss TS, Ralph SA, Hommel M, Duffy MF, Silva LM, Scherf A, Ivens A, Speed TP, Beeson JG, Cowman AF. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol 2009; 7: e84.
- 66Bobenchik AM, Witola WH, Augagneur Y, Nic Lochlainn L, Garg A, Pachikara N, Choi JY, Zhao YO, Usmani-Brown S, Lee A, Adjalley SH, Samanta S, Fidock DA, Voelker DR, Fikrig E, Ben Mamoun C. Plasmodium falciparum phosphoethanolamine methyltransferase is essential for malaria transmission. Proc Natl Acad Sci USA 2013; 110: 18262–18267.
- 67Westerheide SD, Anckar J, Stevens SM, Jr, Sistonen L, Morimoto RI. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 2009; 323: 1063–1066.
- 68Pan C, Potratz JP, Cannon B, Simpson ZB, Ziehr JL, Tijerina P, Russell R. DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture. PLoS Biol 2014; 12: e1001981.
- 69Lee AH, Symington LS, Fidock DA. DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum. Microbiol Mol Biol Rev 2014; 78: 469–486.
- 70Jayabalasingham B, Menard R, Fidock DA. Recent insights into fatty acid acquisition and metabolism in malarial parasites. F1000 Biol Rep 2010; 2: 24.
- 71Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechlivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B, Waldmann H, Bastiaens PI. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 2010; 141: 458–471.
- 72Slavic K, Straschil U, Reininger L, Doerig C, Morin C, Tewari R, Krishna S. Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality. Mol Microbiol 2010; 75: 1402–1413.
- 73Guha M, Choubey V, Maity P, Kumar S, Shrivastava K, Puri SK, Bandyopadhyay U. Overexpression, purification and localization of apoptosis related protein from Plasmodium falciparum. Protein Expr Purif 2007; 52: 363–372.
- 74Thevenin A, Ein-Dor L, Ozery-Flato M, Shamir R. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome. Nucleic Acids Res 2014; 42: 9854–9861.
- 75Niang M, Bei AK, Madnani KG, Pelly S, Dankwa S, Kanjee U, Gunalan K, Amaladoss A, Yeo KP, Bob NS, Malleret B, Duraisingh MT, Preiser PR. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe 2014; 16: 81–93.
- 76Mundwiler-Pachlatko E, Beck HP. Maurer's clefts, the enigma of Plasmodium falciparum. Proc Natl Acad Sci USA 2013; 110: 19987–19994.
- 77Fowler EV, Chavchich M, Chen N, Peters JM, Kyle DE, Gatton ML, Cheng Q. Physical linkage to drug resistance genes results in conservation of var genes among West Pacific Plasmodium falciparum isolates. J Infect Dis 2006; 194: 939–948.
- 78Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, Haas F, Nieuwland J, Lim B, Muller C, Salcedo-Sora E, Kruse C, Orsel M, Hell R, Miller AJ, Bray P, Foyer CH, Murray JA, Meyer AJ, Cobbett CS. Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Natl Acad Sci USA 2010; 107: 2331–2336.
- 79Olszak T, Neves JF, Dowds CM, Baker K, Glickman J, Davidson NO, Lin CS, Jobin C, Brand S, Sotlar K, Wada K, Katayama K, Nakajima A, Mizuguchi H, Kawasaki K, Nagata K, Muller W, Snapper SB, Schreiber S, Kaser A, Zeissig S, Blumberg RS. Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 2014; 509: 497–502.
- 80Manjili MH, Wang XY, Chen X, Martin T, Repasky EA, Henderson R, Subjeck JR. HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice. J Immunol 2003; 171: 4054–4061.