NF023 binding to XIAP-BIR1: Searching drugs for regulation of the NF-κB pathway
Federica Cossu
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Search for more papers by this authorMario Milani
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Biophysics Institute, National Research Council, Milano, I-20133 Italy
Search for more papers by this authorSerena Grassi
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Search for more papers by this authorFrancesca Malvezzi
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Search for more papers by this authorAlessandro Corti
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Search for more papers by this authorMartino Bolognesi
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Biophysics Institute, National Research Council, Milano, I-20133 Italy
Search for more papers by this authorCorresponding Author
Eloise Mastrangelo
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Biophysics Institute, National Research Council, Milano, I-20133 Italy
Correspondence to: Dr. Eloise Mastrangelo, CNR-IBF, Università degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy. E-mail: [email protected]Search for more papers by this authorFederica Cossu
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Search for more papers by this authorMario Milani
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Biophysics Institute, National Research Council, Milano, I-20133 Italy
Search for more papers by this authorSerena Grassi
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Search for more papers by this authorFrancesca Malvezzi
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Search for more papers by this authorAlessandro Corti
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Search for more papers by this authorMartino Bolognesi
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Biophysics Institute, National Research Council, Milano, I-20133 Italy
Search for more papers by this authorCorresponding Author
Eloise Mastrangelo
Dipartimento Di Bioscienze, Università Di Milano, I-20133 Italy
Biophysics Institute, National Research Council, Milano, I-20133 Italy
Correspondence to: Dr. Eloise Mastrangelo, CNR-IBF, Università degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy. E-mail: [email protected]Search for more papers by this authorABSTRACT
Inhibitor of Apoptosis Proteins (IAPs) are the target of extensive research in the field of cancer therapy since they regulate apoptosis and cell survival. Smac-mimetics, the most promising IAP-targeting compounds specifically recognize the IAP-BIR3 domain and promote apoptosis, competing with caspases for IAP binding. Furthermore, Smac-mimetics interfere with the NF-κB survival pathway, inducing cIAP1 and cIAP2 degradation through an auto-ubiquitination process. It has been shown that the XIAP-BIR1 (X-BIR1) domain is involved in the interaction with TAB1, an upstream adaptor for TAK1 kinase activation, which in turn couples with the NF-κB survival pathway. Preventing X-BIR1 dimerization abolishes XIAP-mediated NF-κB activation, thus implicating a proximity-induced mechanism for TAK1 activation. In this context, in a systematic search for a molecule capable of impairing X-BIR1/TAB1 assembly, we identified the compound NF023. Here we report the crystal structure of the human X-BIR1 domain in the absence and in the presence of NF023, as a starting concept for the design of novel BIR1-specific compounds acting synergistically with existing pro-apoptotic drugs in cancer therapy. Proteins 2015; 83:612–620. © 2015 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
prot24766-sup-0001-suppinfo1.pdf1.9 MB |
Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Deveraux QL, Reed JC. IAP family proteins–suppressors of apoptosis. Genes Dev 1999; 13: 239–252.
- 2 LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 1998; 17: 3247–3259.
- 3 Dynek JN, Vucic D. Antagonists of IAP proteins as cancer therapeutics. Cancer Lett 2013; 332: 206–214.
- 4 Salvesen GS, Duckett CS. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 2002; 3: 401–410.
- 5 Gyrd-Hansen M, Darding M, Miasari M, Santoro MM, Zender L, Xue W, Tenev T, da Fonseca PC, Zvelebil M, Bujnicki JM, Lowe S, Silke J, Meier P. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat Cell Biol 2008; 10: 1309–1317.
- 6 Deveraux QL, Takahashi R, Salvesen GS, Reed JC. Xlinked IAP is a direct inhibitor of cell-death proteases. Nature 1997; 388: 300–304.
- 7 Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S. SM-164: a novel, bivalent smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res 2008; 68: 9384–9393.
- 8 Cossu F, Milani M, Mastrangelo E, Vachette P, Servida F, Lecis D, Canevari G, Delia D, Drago C, Rizzo V, Manzoni L, Seneci P, Scolastico C, Bolognesi M. Structural basis for bivalent Smac-mimetics recognition in the IAP protein family. J Mol Biol 2009; 392: 630–644.
- 9 Lecis D, Mastrangelo E, Belvisi L, Bolognesi M, Civera M, Cossu F, De Cesare M, Delia D, Drago C, Manenti G, Manzoni L, Milani M, Moroni E, Perego P, Potenza D, Rizzo V, Scavullo C, Scolastico C, Servida F, Vasile F, Seneci P. Dimeric smac mimetics/IAP inhibitors as in vivo-active pro-apoptotic agents. Part II: Structural and Biological characterization. Bioorg Med Chem 2012; 20: 6709–6723.
- 10 Manzoni L, Belvisi L, Bianchi A, Conti A, Drago C, de Matteo M, Ferrante L, Mastrangelo E, Perego P, Potenza D, Scolastico C, Servida F, Timpano G, Vasile F, Rizzo V, Seneci P. Homo- and heterodimeric smac mimetics/IAP inhibitors as in vivo-active pro-apoptotic agents. Part I: Synthesis Bioorg Med Chem 2012; 20: 6687–6708.
- 11 Flygare JA, Fairbrother WJ. Small-molecule pan-IAP antagonists: a patent review. Expert Opin Ther Pat 2010; 20: 251–267.
- 12 Lu M, Lin SC, Huang Y, Kang YJ, Rich R, Lo YC, Myszka D, Han J, Wu H. XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell 2007; 26: 689–702.
- 13
Morris GM,
Goodsell DS,
Halliday RS,
Huey R,
Hart WE,
Belew RK,
Olson AJ. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998; 19: 1639–1662.
10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B CAS Web of Science® Google Scholar
- 14 Lin SC, Huang Y, Lo YC, Lu M, Wu H. Crystal structure of the BIR1 domain of XIAP in two crystal forms. J Mol Biol 2007; 372: 847–854.
- 15 Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comput Chem 1984; 5: 129–145.
- 16 Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 1985; 28: 849–857.
- 17
Gasteiger J,
Marsili M. A new model for calculating atomic charges in molecules. Tetrahedron Lett 1978; 19: 3181–3184.
10.1016/S0040-4039(01)94977-9 Google Scholar
- 18 Steller I, Bolotovsky R, Rossmann MG. An algorithm for automatic indexing of oscillation images using fourier analysis. J Appl Cryst 1997; 30: 1036–1040.
- 19 Collaborative Computational Project, No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 1994; D50: 760–763.
10.1107/S0907444994003112 Google Scholar
- 20 Vagin AA, Teplyakov A. MOLREP: an automated program for molecular replacement. J Appl Crystallogr 1997; 30: 1022–1025.
- 21 Winn MD, Isupov MN, Murshudov GN. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr D Biol Crystallogr 2001; 57: 122–133.
- 22 Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60: 2126–2132.
- 23 Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 1997; 53: 240–255.
- 24 Bricogne G, Blanc E, Brandl M, Flensburg C, Keller P, Paciorek W, Roversi P, Sharff A, Smart OS, Vonrhein C, Womack TO. BUSTER version 2.11.1. Cambridge, United Kingdom: Global Phasing Ltd; 2011.
- 25 Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 1996; 8: 477–486.
- 26 Berman HM, Westbrook J, Feng Z, Gillil G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28: 235–242.
- 27 Soto F, Lambrecht G, Nickel P, Stuhmer W, Busch AE. Antagonistic properties of the suramin analogue NF023 at heterologously expressed P2X receptors. Neuropharmacology 1999; 38: 141–149.
- 28 Ortega A, Amoros D, Garcia de la Torre J. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J 2011; 101: 892–898.
- 29 Plevin MJ, Magalhaes BS, Harris R, Sankar A, Perkins SJ, Driscoll PC. Characterization and manipulation of the pseudomonas aeruginosa dimethylarginine dimethylaminohydrolase monomer–dimer equilibrium. J Mol Biol 2004; 341: 171–184.
- 30 Xiao H, Briere LA, Dunn SD, Yada RY. Characterization of the monomer-dimer equilibrium of recombinant histo-aspartic protease from plasmodium falciparum. Mol Biochem Parasitol 2010; 173: 17–24.
- 31 Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010; 38: 101–113.
- 32 van Rhee AM, Jacobson KA. Molecular architecture of G Protein-coupled receptors. Drug Dev Res 1996; 37: 1–38.
- 33 Freissmuth M, Boehm S, Beindl W, Nickel P, Ijzerman AP, Hohenegger M, Nanoff C. Suramin analogues as subtype-selective G protein inhibitors. Mol Pharmacol 1996; 49: 602–611.
- 34 Sneddon P, Westfall TD, Todorov LD, Todorova SM, Westfall DP, Nickel P, Kennedy C. The effect of P2 receptor antagonists and ATPase inhibition on sympathetic purinergic neurotransmission in the guinea-pig isolated vas deferens. Br J Pharmacol 2000; 129: 1089–1094.