Carbohydrate binding module recognition of xyloglucan defined by polar contacts with branching xyloses and CH-Π interactions
Laura von Schantz
Department of Immunotechnology, Lund University, Medicon Village, SE-223 81 Lund, Sweden
Search for more papers by this authorMaria Håkansson
SARomics Biostructures AB, Medicon Village, SE-223 81 Lund, Sweden
Search for more papers by this authorDerek T. Logan
SARomics Biostructures AB, Medicon Village, SE-223 81 Lund, Sweden
Department of Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
Search for more papers by this authorEva Nordberg-Karlsson
Department of Biotechnology, Lund University, SE-22100 Lund, Sweden
Search for more papers by this authorCorresponding Author
Mats Ohlin
Department of Immunotechnology, Lund University, Medicon Village, SE-223 81 Lund, Sweden
Correspondence to: Mats Ohlin, Department of Immunotechnology, Lund University, Medicon Village, SE-223 81 Lund, Sweden. E-mail: [email protected]Search for more papers by this authorLaura von Schantz
Department of Immunotechnology, Lund University, Medicon Village, SE-223 81 Lund, Sweden
Search for more papers by this authorMaria Håkansson
SARomics Biostructures AB, Medicon Village, SE-223 81 Lund, Sweden
Search for more papers by this authorDerek T. Logan
SARomics Biostructures AB, Medicon Village, SE-223 81 Lund, Sweden
Department of Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
Search for more papers by this authorEva Nordberg-Karlsson
Department of Biotechnology, Lund University, SE-22100 Lund, Sweden
Search for more papers by this authorCorresponding Author
Mats Ohlin
Department of Immunotechnology, Lund University, Medicon Village, SE-223 81 Lund, Sweden
Correspondence to: Mats Ohlin, Department of Immunotechnology, Lund University, Medicon Village, SE-223 81 Lund, Sweden. E-mail: [email protected]Search for more papers by this authorABSTRACT
Engineering of novel carbohydrate-binding proteins that can be utilized in various biochemical and biotechnical applications would benefit from a deeper understanding of the biochemical interactions that determine protein-carbohydrate specificity. In an effort to understand further the basis for specificity we present the crystal structure of the multi-specific carbohydrate-binding module (CBM) X-2 L110F bound to a branched oligomer of xyloglucan (XXXG). X-2 L110F is an engineered CBM that can recognize xyloglucan, xylans and β-glucans. The structural observations of the present study compared with previously reported structures of X-2 L110F in complex with linear oligomers, show that the π-surface of a phenylalanine, F110, allows for interactions with hydrogen atoms on both linear (xylopentaose and cellopentaose) and branched ligands (XXXG). Furthermore, X-2 L110F is shown to have a relatively flexible binding cleft, as illustrated in binding to XXXG. This branched ligand requires a set of reorientations of protein side chains Q72, N31, and R142, although these residues have previously been determined as important for binding to xylose oligomers by mediating polar contacts. The loss of these polar contacts is compensated for in binding to XXXG by polar interactions mediated by other protein residues, T74, R115, and Y149, which interact mainly with the branching xyloses of the xyloglucan oligomer. Taken together, the present study illustrates in structural detail how CH-π interactions can influence binding specificity and that flexibility is a key feature for the multi-specificity displayed by X-2 L110F, allowing for the accommodation of branched ligands. Proteins 2014; 82:3466–3475. © 2014 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
prot24700-sup-0001-suppinfo.pdf652.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Keegstra K, Talmadge KW, Bauer WD, Albersheim P. The structure of plant cell walls: III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 1973; 51: 188–197.
- 2O'Neill MA, York WS. The plant cell wall. JKC Rose, editor. Oxford Boca Raton: Blackwell, CRC; 2003. pp 1–54.
- 3York WS, van Halbeek H, Darvill AG, Albersheim P. Structural analysis of xyloglucan oligosaccharides by 1H-NMR spectroscopy and fast-atom-bombardment mass spectrometry. Carbohydr Res 1990; 200: 9–31.
- 4Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau JP, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort AJ, Reid JSG, Seitz HU, Selvendran RR, Voragen AGJ, White AR. An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant 1993; 89: 1–3.
- 5Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 2001; 56: 634–649.
- 6Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 2008; 35: 377–391.
- 7Doi RH, Kosugi A. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2004; 2: 541–251.
- 8van Dyk JS, Sakka M, Sakka K, Pletschke BI. Identification of endoglucanases, xylanases, pectinases and mannanases in the multi-enzyme complex of Bacillus licheniformis SVD1. Enz Microbial Technol 2010; 47: 112–118.
- 9Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure 1995; 3: 853–859.
- 10Rabinovich ML, Melnick MS, Bolobova AV. The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Mosc) 2002; 67: 850–871.
- 11Hilden L, Johansson G. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett 2004; 26: 1683–1693.
- 12Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004; 382: 769–781.
- 13Hashimoto H. Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci 2006; 63: 2954–2967.
- 14Guillen D, Sanchez S, Rodriguez-Sanoja R. Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 2010; 85: 1241–1249.
- 15Bolam DN, Ciruela A, McQueen-Mason S, Simpson P, Williamson MP, Rixon JE, Boraston AB, Hazlewood GP, Gilbert HJ. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 1998; 331: 775–781.
- 16Carrard G, Koivula A, Soderlund H, Beguin P. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 2000; 97: 10342–10347.
- 17Herve C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP. Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci USA 2010; 107: 15293–15298.
- 18Din N, Gilkes NR, Tekant B, Miller RC, Warren AJ, Kilburn DG. Non-hydrolytic disruption of cellulose fibers by the binding domain of a bacterial cellulase. Nat Biotechnol 1991; 9: 1096–1099.
- 19Abou-Hachem M, Olsson F, Nordberg-Karlsson E. Probing the stability of the modular family 10 xylanase from Rhodothermus marinus. Extremophiles 2003; 7: 483–491.
- 20Nordberg-Karlsson E, Bartonek-Roxå E, Holst O. Cloning and sequence of a thermostable multidomain xylanase from the bacterium Rhodothermus marinus. Biochim Biophys Acta 1997; 1353: 118–124.
- 21Abou-Hachem M, Nordberg-Karlsson E, Bartonek-Roxå E, Raghothama S, Simpson PJ, Gilbert HJ, Williamson MP, Holst O. Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochem J 2000; 345: 53–60.
- 22Cicortas-Gunnarsson L, Zhou Q, Montanier C, Nordberg-Karlsson E, Brumer H, III, Ohlin M. Engineered xyloglucan specificity in a carbohydrate-binding module. Glycobiology 2006; 16: 1171–1180.
- 23Simpson PJ, Jamieson SJ, Abou-Hachem M, Nordberg-Karlsson EN, Gilbert HJ, Holst O, Williamson MP. The solution structure of the CBM4-2 carbohydrate binding module from a thermostable Rhodothermus marinus xylanase. Biochemistry 2002; 41: 5712–5719.
- 24Gullfot F, Tan TC, von Schantz L, Nordberg-Karlsson E, Ohlin M, Brumer H, III, Divne C. The crystal structure of XG-34, an evolved xyloglucan-specific carbohydrate-binding module. Proteins 2010; 78: 785–789.
- 25von Schantz L, Håkansson M, Logan DT, Walse B, Österlin J, Nordberg-Karlsson E, Ohlin M. Structural basis for carbohydrate-binding specificity—a comparative assessment of two engineered carbohydrate-binding modules. Glycobiology 2012; 22: 948–961.
- 26Cicortas-Gunnarsson L, Nordberg-Karlsson E, Albrekt AS, Andersson M, Holst O, Ohlin M. A carbohydrate binding module as a diversity-carrying scaffold. PEDS 2004; 17: 213–221.
- 27Cicortas-Gunnarsson L, Montanier C, Tunnicliffe RB, Williamson MR, Gilbert HJ, Nordberg-Karlsson E, Ohlin M. Novel xylan-binding properties of an engineered family 4 carbohydrate-binding module. Biochem J 2007; 406: 209–214.
- 28Nishio M. The CH/pi hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys Chem Chem Phys 2011; 13: 13873–13900.
- 29Ramirez-Gualito K, Alonso-Rios R, Quiroz-Garcia B, Rojas-Aguilar A, Diaz D, Jimenez-Barbero J, Cuevas G. Enthalpic nature of the CH/pi interaction involved in the recognition of carbohydrates by aromatic compounds, confirmed by a novel interplay of NMR, calorimetry, and theoretical calculations. J Am Chem Soc 2009; 131: 18129–18138.
- 30Asensio JL, Arda A, Canada FJ, Jimenez-Barbero J. Carbohydrate-aromatic interactions. Acc Chem Res 2013; 46: 946–954.
- 31Kabsch W. Xds. Acta Crystallogr D Biol Crystallogr 2010; 66: 125–132.
- 32McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr 2007; 40: 658–674.
- 33Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 2011; 67: 355–367.
- 34Bae B, Ohene-Adjei S, Kocherginskaya S, Mackie RI, Spies MA, Cann IK, Nair SK. Molecular basis for the selectivity and specificity of ligand recognition by the family 16 carbohydrate-binding modules from Thermoanaerobacterium polysaccharolyticum ManA. J Biol Chem 2008; 283: 12415–12425.
- 35Viegas A, Bras NF, Cerqueira NM, Fernandes PA, Prates JA, Fontes CM, Bruix M, Romao MJ, Carvalho AL, Ramos MJ, Macedo AL, Cabrita EJ. Molecular determinants of ligand specificity in family 11 carbohydrate binding modules: an NMR, X-ray crystallography and computational chemistry approach. FEBS J 2008; 275: 2524–2535.
- 36Luís AS, Venditto I, Temple MJ, Rogowski A, Basle A, Xue J, Knox JP, Prates JA, Ferreira LM, Fontes CM, Najmudin S, Gilbert HJ. Understanding how noncatalytic carbohydrate binding modules can display specificity for xyloglucan. J Biol Chem 2013; 288: 4799–4809.
- 37Mishra A, Malhotra AV. Tamarind xyloglucan: a polysaccharide with versatile application potential. J Mater Chem 2009; 19: 8528–8536.
- 38Kochumalayil J, Sehaqui H, Zhou Q, Berglund LA. Tamarind seed xyloglucan—a thermostable high-performance biopolymer from non-food feedstock. J Mater Chem 2010; 20: 4321–4327.
- 39Marais A, Kochumalayil JJ, Nilsson C, Fogelstrom L, Gamstedt EK. Toward an alternative compatibilizer for PLA/cellulose composites: grafting of xyloglucan with PLA. Carbohydr Polym 2012; 89: 1038–1043.
- 40Moore PJ, Darvill AG, Albersheim P, Staehelin LA. Immunogold localization of xyloglucan and rhamnogalacturonan I in the cell walls of suspension-cultured sycamore cells. Plant Physiol 1986; 82: 787–794.
- 41Puhlmann J, Bucheli E, Swain MJ, Dunning N, Albersheim P, Darvill AG, Hahn MG. Generation of monoclonal antibodies against plant cell-wall polysaccharides. I. Characterization of a monoclonal antibody to a terminal alpha-(1-2)-linked fucosyl-containing epitope. Plant Physiol 1994; 104: 699–710.
- 42Marcus SE, Verhertbruggen Y, Herve C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WG, Knox JP. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 2008; 8: 60.
- 43Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z, Bootten T, Albert A, Davis RH, Chennareddy C, Dong R, O'Shea B, Rossi R, Leoff C, Freshour G, Narra R, O'Neil M, York WS, Hahn MG. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol 2010; 153: 514–525.
- 44Najmudin S, Guerreiro CI, Carvalho AL, Prates JA, Correia MA, Alves VD, Ferreira LM, Romao MJ, Gilbert HJ, Bolam DN, Fontes CM. Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. J Biol Chem 2006; 281: 8815–8828.
- 45Montanier CY, Correia MA, Flint JE, Zhu Y, Basle A, McKee LS, Prates JA, Polizzi SJ, Coutinho PM, Lewis RJ, Henrissat B, Fontes CM, Gilbert HJ. A novel, noncatalytic carbohydrate-binding module displays specificity for galactose-containing polysaccharides through calcium-mediated oligomerization. J Biol Chem 2011; 286: 22499–22509.
- 46Szabo L, Jamal S, Xie H, Charnock SJ, Bolam DN, Gilbert HJ, Davies GJ. Structure of a family 15 carbohydrate-binding module in complex with xylopentaose. Evidence that xylan binds in an approximate 3-fold helical conformation. J Biol Chem 2001; 276: 49061–49065.
- 47Quiocho FA. Carbohydrate-binding proteins: tertiary structures and protein-sugar interactions. Annu Rev Biochem 1986; 55: 287–315.
- 48Terraneo G, Potenza D, Canales A, Jimenez-Barbero J, Baldridge KK, Bernardi A. A simple model system for the study of carbohydrate—aromatic interactions. J Am Chem Soc 2007; 129: 2890–2900.
- 49Martin-Santamaria S, Andre S, Buzamet E, Caraballo R, Fernandez-Cureses G, Morando M, Ribeiro JP, Ramirez-Gualito K, de Pascual-Teresa B, Cañada FJ, Menéndez M, Ramström O, Jiménez-Barbero J, Solís D, Gabius HJ. Symmetric dithiodigalactoside: strategic combination of binding studies and detection of selectivity between a plant toxin and human lectins. Org Biomol Chem 2011; 9: 5445–5455.
- 50Flint J, Bolam DN, Nurizzo D, Taylor EJ, Williamson MP, Walters C, Davies GJ, Gilbert HJ. Probing the mechanism of ligand recognition in family 29 carbohydrate-binding modules. J Biol Chem 2005; 280: 23718–23726.
- 51Powlesland AS, Quintero-Martinez A, Lim PG, Pipirou Z, Taylor ME, Drickamer K. Engineered carbohydrate-recognition domains for glycoproteomic analysis of cell surface glycosylation and ligands for glycan-binding receptors. Methods Enzymol 2010; 480: 165–179.
- 52Zakariassen H, Aam BB, Horn SJ, Varum KM, Sorlie M, Eijsink VG. Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. J Biol Chem 2009; 284: 10610–10617.
- 53McLean BW, Bray MR, Boraston AB, Gilkes NR, Haynes CA, Kilburn DG. Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng 2000; 13: 801–809.
- 54von Schantz L, Gullfot F, Scheer S, Filonova L, Cicortas Gunnarsson L, Flint JE, Daniel G, Nordberg-Karlsson E, Brumer H, Ohlin M. Affinity maturation generates greatly improved xyloglucan-specific carbohydrate binding modules. BMC Biotechnol 2009; 9: 92.