Physics-based enzyme design: Predicting binding affinity and catalytic activity
Sarah Sirin
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02140
Search for more papers by this authorDavid A. Pearlman
Schrödinger, Inc., 120 West 45th Street, New York, New York, 10036
Search for more papers by this authorCorresponding Author
Woody Sherman
Schrödinger, Inc., 120 West 45th Street, New York, New York, 10036
Correspondence to: Woody Sherman, Schrödinger, 120 West 45th Street, New York, NY 10036. E-mail: [email protected]Search for more papers by this authorSarah Sirin
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02140
Search for more papers by this authorDavid A. Pearlman
Schrödinger, Inc., 120 West 45th Street, New York, New York, 10036
Search for more papers by this authorCorresponding Author
Woody Sherman
Schrödinger, Inc., 120 West 45th Street, New York, New York, 10036
Correspondence to: Woody Sherman, Schrödinger, 120 West 45th Street, New York, NY 10036. E-mail: [email protected]Search for more papers by this authorABSTRACT
Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical–chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications. Proteins 2014; 82:3397–3409. © 2014 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
prot24694-sup-0001-suppinfo01.docx5 MB | Supporting Information |
prot24694-sup-0002-suppinfo01.gz2.9 KB | Supporting Information |
prot24694-sup-0003-suppinfo02.gz15.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Kries H, Blomberg R, Hilvert D. De novo enzymes by computational design. Curr Opin Chem Biol 2013; 17: 221–228.
- 2Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk K, Tawfik D, Baker D. Kemp elimination catalysts by computational enzyme design. Nature 2008; 453: 190–195.
- 3Kiss G, Celebi-Olcum N, Moretti R, Baker D, Houk KN. Computational enzyme design. Angew Chem Int Ed Engl 2013; 52: 5700–5725.
- 4Park H-S, Nam S-H, Lee JK, Yoon CN, Mannervik B, Benkovic SJ, Kim H-S. Design and evolution of new catalytic activity with an existing protein scaffold. Science 2006; 311: 535–538.
- 5Lippow SM, Tidor B. Progress in computational protein design. Curr Opin Biotechnol 2007; 18: 305–311.
- 6Bloom JD, Meyer MM, Meinhold P, Otey CR, MacMillan D, Arnold FH. Evolving strategies for enzyme engineering. Curr Opin Struct Biol 2005; 15: 447–452.
- 7Midelfort KS, Kumar R, Han S, Karmilowicz MJ, McConnell K, Gehlhaar DK, Mistry A, Chang JS, Anderson M, Villalobos A, Minshull J, Govindarajan S, Wong JW. Redesigning and characterizing the substrate specificity and activity of Vibrio fluvialis aminotransferase for the synthesis of imagabalin. Protein Eng Des Sel 2013; 26: 25–33.
- 8Moult J, Pedersen JT, Judson R, Fidelis K. A large-scale experiment to assess protein structure prediction methods. Proteins 1995; 23: ii–iv.
- 9Fleishman SJ, Whitehead TA, Strauch E-M, Corn JE, Qin S, Zhou H-X, Mitchell JC, Demerdash ONA, Takeda-Shitaka M, Terashi G, Moal IH, Li X, Bates PA, Zacharias M, Park H, Ko J-s, Lee H, Seok C, Bourquard T, Bernauer J, Poupon A, Azé J, Soner S, Ovali ŞK, Ozbek P, Tal NB, Haliloglu T, Hwang H, Vreven T, Pierce BG, Weng Z, Pérez-Cano L, Pons C, Fernández-Recio J, Jiang F, Yang F, Gong X, Cao L, Xu X, Liu B, Wang P, Li C, Wang C, Robert CH, Guharoy M, Liu S, Huang Y, Li L, Guo D, Chen Y, Xiao Y, London N, Itzhaki Z, Schueler-Furman O, Inbar Y, Potapov V, Cohen M, Schreiber G, Tsuchiya Y, Kanamori E, Standley DM, Nakamura H, Kinoshita K, Driggers CM, Hall RG, Morgan JL, Hsu VL, Zhan J, Yang Y, Zhou Y, Kastritis PL, Bonvin AMJJ, Zhang W, Camacho CJ, Kilambi KP, Sircar A, Gray JJ, Ohue M, Uchikoga N, Matsuzaki Y, Ishida T, Akiyama Y, Khashan R, Bush S, Fouches D, Tropsha A, Esquivel-Rodríguez J, Kihara D, Stranges PB, Jacak R, Kuhlman B, Huang S-Y, Zou X, Wodak SJ, Janin J, Baker D. Community-wide assessment of protein-interface modeling suggests improvements to design methodology. J Mol Biol 2011; 414: 289–302.
- 10Almagro JC, Beavers MP, Hernandez-Guzman F, Maier J, Shaulsky J, Butenhof K, Labute P, Thorsteinson N, Kelly K, Teplyakov A, Luo J, Sweet R, Gilliland GL. Antibody modeling assessment. Proteins 2011; 79: 3050–3066.
- 11Kiss G, Röthlisberger D, Baker D, Houk KN. Evaluation and ranking of enzyme designs. Protein Sci 2010; 19: 1760–1773.
- 12Privett HK, Kiss G, Lee TM, Blomberg R, Chica RA, Thomas LM, Hilvert D, Houk KN, Mayo SL. Iterative approach to computational enzyme design. Proc Natl Acad Sci USA 2012; 109: 3790–3795.
- 13Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, Clair JLS, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 2010; 329: 309–313.
- 14Linder M, Johansson AJ, Olsson TS, Liebeschuetz J, Brinck T. Designing a new diels–alderase: a combinatorial, semirational approach including dynamic optimization. J Chem Inf Model 2011; 51: 1906–1917.
- 15Osguthorpe DJ, Sherman W, Hagler AT. Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering. Chem Biol Drug Des 2012; 80: 182–193.
- 16Lyne PD, Lamb ML, Saeh JC. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 2006; 49: 4805–4808.
- 17Greenidge PA, Kramer C, Mozziconacci J-C, Wolf RM. MM/GBSA Binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J Chem Inf Model 2012; 53: 201–209.
- 18Sirin S, Kumar R, Martinez CA, Karmilowicz MJ, Ghosh P, Abramov YA, Martin V, Sherman W. A computational approach to enzyme design: predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring. J Chem Inf Model 2014; 54: 2334–2346.
- 19Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D. Computational design of ligand-binding proteins with high affinity and selectivity. Nature 2013; 501: 212–216.
- 20Gordon SR, Stanley EJ, Wolf S, Toland A, Wu SJ, Hadidi D, Mills JH, Baker D, Pultz IS, Siegel JB. Computational design of an α-Gliadin Peptidase. J Am Chem Soc 2012; 134: 20513–20520.
- 21Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B. KNIME: the Konstanz information miner. Springer; 2008.
- 22Kim Y, Joachimiak A, Xu X, Savchenko A, Edwards A. PDB ID: 1Z1S.
- 23Kinch LN, Grishin NV. Evolution of protein structures and functions. Curr Opin Struct Biol 2002; 12: 400–408.
- 24Wlodawer A, Li M, Gustchina A, Tsuruoka N, Ashida M, Minakata H, Oyama H, Oda K, Nishino T, Nakayama T. Crystallographic and biochemical investigations of kumamolisin-As, a serine-carboxyl peptidase with collagenase activity. J Biol Chem 2004; 279: 21500–21510.
- 25Comellas-Bigler M, Maskos K, Huber R, Oyama H, Oda K, Bode W. 1.2 Å crystal structure of the serine carboxyl proteinase pro-kumamolisin: structure of an intact pro-subtilase. Structure 2004; 12: 1313–1323.
- 26Sastry GM, Inakollu VS, Sherman W. Boosting virtual screening enrichments with data fusion: coalescing hits from 2D fingerprints, shape, and docking. J Chem Inf Model 2013; 53: 1531–1542.
- 27 Impact version 5.9. New York, NY: Schrödinger, LLC; 2013.
- 28 Prime, version 3.4. New York, NY: Schrödinger, LLC; 2013.
- 29 SiteMap, version 2.9. New York, NY: Schrödinger, LLC; 2013.
- 30Beard H, Cholleti A, Pearlman D, Sherman W, Loving KA. Applying physics-based scoring to calculate free energies of binding for single amino acid mutations in protein-protein complexes. PLoS One 2013; 8: e82849.
- 31Olsson MH, Søndergaard CR, Rostkowski M, Jensen JH. PROPKA3: consistent treatment of internal and surface residues in empirical p K a predictions. J Chem Theory Comput 2011; 7: 525–537.
- 32Banks JL, Beard HS, Cao Y, Cho AE, Damm W, Farid R, Felts AK, Halgren TA, Mainz DT, Maple JR, Murphy R, Philipp D, Repasky M, Zhang L, Berne B, Friesner R, Gallicchio E, Levy R. Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem 2005; 26: 1752–1780.
- 33Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon J, Yibing S, Shaw D. Scalable algorithms for molecular dynamics simulations on commodity clusters. IEEE; 2006. p 43.
- 34 Desmond molecular dynamics system, version 3.6. New York, NY: D. E. Shaw Research; 2013.
- 35 Maestro, version 9.6. New York, NY: Schrödinger, LLC; 2013.
- 36Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79: 926.
- 37Guvench O, MacKerell AD, Jr. Comparison of protein force fields for molecular dynamics simulations. Molecular modeling of proteins. Springer; 2008. pp 63–88.
- 38Jorgensen WL, Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 1988; 110: 1657–1666.
- 39Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 2001; 105: 6474–6487.
- 40Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins 2011; 79: 2794–2812.
- 41Ghosh A, Rapp CS, Friesner RA. Generalized Born model based on a surface integral formulation. J Phys Chem B 1998; 102: 10983–10990.
- 42Yu Z, Jacobson MP, Friesner RA. What role do surfaces play in GB models? A new-generation of surface-generalized born model based on a novel gaussian surface for biomolecules. J Comput Chem 2006; 27: 72–89.
- 43Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 2010; 6: 1509–1519.
- 44Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996; 118: 11225–11236.
- 45Jacobson MP, Friesner RA, Xiang Z, Honig B. On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 2002; 320: 597–608.
- 46Huang N, Kalyanaraman C, Bernacki K, Jacobson MP. Molecular mechanics methods for predicting protein–ligand binding. Phys Chem Chem Phys 2006; 8: 5166–5177.
- 47Casey ML, Kemp D, Paul KG, Cox DD. Physical organic chemistry of benzisoxazoles. I. Mechanism of the base-catalyzed decomposition of benzisoxazoles. J Org Chem 1973; 38: 2294–2301.
- 48Alexandrova AN, Roïthlisberger D, Baker D, Jorgensen WL. Catalytic mechanism and performance of computationally designed enzymes for Kemp elimination. J Am Chem Soc 2008; 130: 15907–15915.
- 49Frushicheva MP, Cao J, Chu ZT, Warshel A. Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase. Proc Natl Acad Sci USA 2010; 107: 16869–16874.
- 50Lassila JK, Baker D, Herschlag D. Origins of catalysis by computationally designed retroaldolase enzymes. Proc Natl Acad Sci USA 2010; 107: 4937–4942.
- 51Khersonsky O, Rothlisberger D, Dym O, Albeck S, Jackson CJ, Baker D, Tawfik DS. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series. J Mol Biol 2010; 396: 1025–1042.
- 52Abel R, Salam NK, Shelley J, Farid R, Friesner RA, Sherman W. Contribution of explicit solvent effects to the binding affinity of small-molecule inhibitors in blood coagulation factor serine proteases. ChemMedChem 2011; 6: 1049–1066.
- 53Khare SD, Fleishman SJ. Emerging themes in the computational design of novel enzymes and protein–protein interfaces. FEBS Lett 2013; 587: 1147–1154.
- 54Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ, Stoddard BL, Baker D. Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 2006; 441: 656–659.
- 55Yang W, Wilkins AL, Ye Y, Liu Z-R, Li S-Y, Urbauer JL, Hellinga HW, Kearney A, van der Merwe PA, Yang JJ. Design of a calcium-binding protein with desired structure in a cell adhesion molecule. J Am Chem Soc 2005; 127: 2085–2093.
- 56Cochran FV, Wu SP, Wang W, Nanda V, Saven JG, Therien MJ, DeGrado WF. Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor. J Am Chem Soc 2005; 127: 1346–1347.
- 57Salam NK, Adzhigirey M, Sherman W, Pearlman DA. Structure-based approach to the prediction of disulfide bonds in proteins. Protein Eng Des Sel 2014: gzu017.
- 58Wang L, Deng Y, Knight JL, Wu Y, Kim B, Sherman W, Shelley JC, Lin T, Abel R. Modeling local structural rearrangements using fep/rest: application to relative binding affinity predictions of cdk2 inhibitors. J Chem Theory Comput 2013; 9: 1282–1293.
- 59Åqvist J, Medina C, Samuelsson J-E. A new method for predicting binding affinity in computer-aided drug design. Protein Eng 1994; 7: 385–391.
- 60Lee FS, Chu Z-T, Bolger MB, Warshel A. Calculations of antibody-antigen interactions: microscopic and semi-microscopic evaluation of the free energies of binding of phosphorylcholine analogs to McPC603. Protein Eng 1992; 5: 215–228.