Structural changes of Listeria monocytogenes sortase A: A key to understanding the catalytic mechanism
Boxue Tian
School of Chemistry, National University of Ireland, Galway, Ireland
Search for more papers by this authorCorresponding Author
Leif A. Eriksson
School of Chemistry, National University of Ireland, Galway, Ireland
School of Chemistry, National University of Ireland, Galway, Galway, Ireland===Search for more papers by this authorBoxue Tian
School of Chemistry, National University of Ireland, Galway, Ireland
Search for more papers by this authorCorresponding Author
Leif A. Eriksson
School of Chemistry, National University of Ireland, Galway, Ireland
School of Chemistry, National University of Ireland, Galway, Galway, Ireland===Search for more papers by this authorAbstract
Listeria monocytogenes is one of the most virulent foodborne pathogens. L. monocytogenes Sortase A (SrtA) enzyme, which catalyzes the cell wall anchoring reaction of the leucine, proline, X, threonine, and glycine proteins (LPXTG, where X is any amino acid), is a target for the development of antilisteriosis drugs. In this study, the structure of the L. monocytogenes SrtA enzyme-substrate complex was obtained using homology modeling, molecular docking and molecular dynamics simulations. Explicit enzyme-substrate interactions in the inactive and active forms of the enzyme were compared, based on 30ns simulations on each system. The active site arginine (Arg 197) was found to be able change its hydrogen donor interactions from the LP backbone carbonyl groups of the LPXTG substrate in the inactive form, to the TG backbone carbonyls in the active form, which could be of importance for holding the substrate in position for the catalytic process. Proteins 2011; © 2011 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22983_sm_suppinfo.pdf599.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Lorber B. Listeria monocytogenes: pathogenesis and host response. Berlin, Germany: Springer; 2007. pp 13–24.
- 2 Vazquez-Boland JA,Kuhn M,Berche P,Chakraborty T,Dominguez-Bernal G,Goebel W,Gonzalez-Zorn B,Wehland J,Kreft J. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 2001; 14: 584–640.
- 3 Cabanes D,Dehoux P,Dussurget O,Frangeul L,Cossart P. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol 2002; 10: 238–245.
- 4 Bierne H,Cossart P. Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 2007; 71: 377–397.
- 5 Hamon M,Bierne H,Cossart P. Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 2006; 4: 423–434.
- 6 Paterson GK,Mitchell TJ. The biology of gram-positive sortase enzymes. Trends Microbiol 2004; 12: 89–95.
- 7 Marraffini LA,DeDent AC,Schneewind O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev 2006; 70: 192–221.
- 8 Dhar G,Faull KF,Schneewind O. Anchor structure of cell wall surface proteins in Listeria monocytogenes. Biochemistry 2000; 39: 3725–3733.
- 9 Bierne H,Mazmanian SK,Trost M,Pucciarelli MG,Liu G,Dehoux P,Jansch L,Garcia-del Portillo F,Schneewind O,Cossart P. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol Microbiol 2002; 43: 869–881.
- 10 Mazmanian SK,Liu G,Hung TT,Schneewind O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 1999; 285: 760–763.
- 11 Cossart P,Jonquieres R. Sortase, a universal target for therapeutic agents against gram-positive bacteria? Proc Natl Acad Sci USA 2000; 97: 5013–5015.
- 12 Ton-That H,Mazmanian SK,Faull KF,Schneewind O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus—sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH2-Gly(3) substrates. J Biol Chem 2000; 275: 9876–9881.
- 13 Mazmanian SK,Hung IT,Schneewind O. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 2001; 40: 1049–1057.
- 14 Perry AM,Ton-That H,Mazmanian SK,Schneewind O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus—III. Lipid II is an in vivo peptidoglycan substrate for sortase-catalyzed surface protein anchoring. J Biol Chem 2002; 277: 16241–16248.
- 15 Ton-That H,Mazmanian SK,Alksne L,Schneewind O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus—cysteine 184 and histidine 120 of sortase form a thiolate-imidazolium ion pair for catalysis. J Biol Chem 2002; 277: 7447–7452.
- 16 Marraffini LA,Ton-That H,Zong YN,Narayana SVL,Schneewind O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus—a conserved arginine residue is required for efficient catalysis of sortase A. J Biol Chem 2004; 279: 37763–37770.
- 17 Frankel BA,Kruger RG,Robinson DE,Kelleher NL,McCafferty DG. Staphylococcus aureus sortase transpeptidase SrtA: insight into the kinetic mechanism and evidence for a reverse protonation catalytic mechanism. Biochemistry 2005; 44: 11188–11200.
- 18 Frankel BA,Tong Y,Bentley ML,Fitzgerald MC,McCafferty DG. Mutational analysis of active site residues in the Staphylococcus aureus transpeptidase SrtA. Biochemistry 2007; 46: 7269–7278.
- 19 Bentley ML,Lamb EC,McCafferty DG. Mutagenesis studies of substrate recognition and catalysis in the sortase A transpeptidase from Staphylococcus aureus. J Biol Chem 2008; 283: 14762–14771.
- 20 Maresso AW,Schneewind O. Sortase as a target of anti-infective therapy. Pharmacol Rev 2008; 60: 128–141.
- 21 Suree N,Jung ME,Clubb RT. Recent advances towards new anti-infective agents that inhibit cell surface protein anchoring in Staphylococcus aureus and other gram-positive pathogens. Mini-Rev Med Chem 2007; 7: 991–1000.
- 22 Kudryavtsev KV,Bentley ML,McCafferty DG. Probing of the cis-5-phenyl proline scaffold as a platform for the synthesis of mechanism-based inhibitors of the Staphylococcus aureus sortase SrtA isoform. Bioorg Med Chem 2009; 17: 2886–2893.
- 23 Suree N,Yi SW,Thieu W,Marohn M,Damoiseaux R,Chan A,Jung ME,Clubb RT. Discovery and structure-activity relationship analysis of Staphylococcus aureus sortase A inhibitors. Bioorg Med Chem 2009; 17: 7174–7185.
- 24 Huang XY,Aulabaugh A,Ding WD,Kapoor B,Alksne L,Tabei K,Ellestad G. Kinetic mechanism of Staphylococcus aureus sortase SrtA. Biochemistry 2003; 42: 11307–11315.
- 25 Suree N,Liew CK,Villareal VA,Thieu W,Fadeev EA,Clemens JJ,Jung ME,Clubb RT. The structure of the Staphylococcus aureus sortase-substrate complex reveals how the universally conserved LPXTG sorting signal is recognized. J Biol Chem 2009; 284: 24465–24477.
- 26 Zong YN,Bice TW,Ton-That H,Schneewind O,Narayana SVL. Crystal structures of Staphylococcus aureus sortase A and its substrate complex. J Biol Chem 2004; 279: 31383–31389.
- 27 Wang JM,Cieplak P,Kollman PA. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 2000; 21: 1049–1074.
- 28 Duan Y,Wu C,Chowdhury S,Lee MC,Xiong GM,Zhang W,Yang R,Cieplak P,Luo R,Lee T,Caldwell J,Wang JM,Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 2003; 24: 1999–2012.
- 29 Labute P. The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. J Comput Chem 2008; 29: 1693–1698.
- 30 MOE, 2009.10. Chemical Computing Group Inc.: Montreal. Available at https://staffmail.nuigalway.ie/exchweb/bin/redir.asp?URL=http://www.chemcomp.com/.
- 31 Hess B,Kutzner C,van der Spoel D,Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 2008; 4: 435–447.
- 32 Frisch MJ,Trucks GW,Schlegel HB,Scuseria GE,Robb MA,Cheeseman JR,Scalmani G,Barone V,Mennucci B,Petersson GA,Nakatsuji H,Caricato M,Li X,Hratchian HP,Izmaylov AF,Bloino J,Zheng G,Sonnenberg JL,Hada M,Ehara M,Toyota K,Fukuda R,Hasegawa J,Ishida M,Nakajima T,Honda Y,Kitao O,Nakai H,Vreven T,Montgomery JA,Jr,Peralta JE,Ogliaro F,Bearpark M,Heyd JJ,Brothers E,Kudin KN,Staroverov VN,Kobayashi R,Normand J,Raghavachari K,Rendell A,Burant JC,Iyengar SS,Tomasi J,Cossi M,Rega N,Millam NJ,Klene M,Knox JE,Cross JB,Bakken V,Adamo C,Jaramillo J,Gomperts R,Stratmann RE,Yazyev O,Austin AJ,Cammi R,Pomelli C,Ochterski JW,Martin RL,Morokuma K,Zakrzewski VG,Voth GA,Salvador P,Dannenberg JJ,Dapprich S,Daniels AD,Farkas Ö,Foresman JB,Ortiz JV,Cioslowski J,Fox DJ. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT, 2009.
- 33 Race PR,Bentley ML,Melvin JA,Crow A,Hughes RK,Smith WD,Sessions RB,Kehoe MA,McCafferty DG,Banfield MJ. Crystal structure of Streptococcus pyogenes Sortase A implications for sortase mechanism. J Biol Chem 2009; 284: 6924–6933.
- 34 Bonazzi M,Lecuit M,Cossart P. Listeria monocytogenes internalin and E-cadherin: from structure to pathogenesis. Cell Microbiol 2009; 11: 693–702.
- 35 Jorgensen WL,Chandrasekhar J,Madura JD,Impey RW,Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79: 926–935.
- 36 Darden T,York D,Pedersen L. Particle mesh Ewald—an N.LOG (N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089–10092.
- 37 Essmann U,Perera L,Berkowitz ML,Darden T,Lee H,Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys 1995; 103: 8577–8593.
- 38 Berendsen HJC,Postma JPM,Vangunsteren WF,Dinola A,Haak JR. Molecular-dynamics with coupling to an external bath. J Chem Phys 1984; 81: 3684–3690.
- 39 Hess B,Bekker H,Berendsen HJC,Fraaije J. LINCS: a linear constraint solver for molecular simulations. J Comput Chem 1997; 18: 1463–1472.
- 40 Dewar MJS,Zoebisch EG,Healy EF,Stewart JJP. The development and use of quantum-mechanical molecular models. 76. AM1—a new general-purpose quantum-mechanical molecular model. J Am Chem Soc 1985; 107: 3902–3909.
- 41 Stewart JJP. Optimization of parameters for semiempirical methods. I. Method J Comput Chem 1989; 10: 209–220.
- 42 Stewart JJP. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 2007; 13: 1173–1213.
- 43 Cossart P,Pizarro-Cerda J,Lecuit M. Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol 2003; 13: 23–31.
- 44 Ramachandran GN,Ramakrishnan C,Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol 1963; 7: 95–99.