Crystal structure of the carbon monoxide complex of human cytoglobin†
Masatomo Makino
RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
Search for more papers by this authorHitomi Sawai
RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
Search for more papers by this authorYoshitsugu Shiro
RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
Search for more papers by this authorCorresponding Author
Hiroshi Sugimoto
RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan===Search for more papers by this authorMasatomo Makino
RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
Search for more papers by this authorHitomi Sawai
RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
Search for more papers by this authorYoshitsugu Shiro
RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
Search for more papers by this authorCorresponding Author
Hiroshi Sugimoto
RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan===Search for more papers by this authorThe atomic coordinates and structure factors for CgbCO complex have been deposited in the RCSB Protein Data Bank (http://www.rcsb.org/) with accession code 3AG0.
Abstract
Cytoglobin (Cgb) is a vertebrate heme-containing globin-protein expressed in a broad range of mammalian tissues. Unlike myoglobin, Cgb displays a hexa-coordinated (bis-hystidyl) heme iron atom, having the heme distal His81(E7) residue as the endogenous sixth ligand. In the present study, we crystallized human Cgb in the presence of a reductant Na2S2O4 under a carbon monoxide (CO) atmosphere, and determined the crystal structure at 2.6 Å resolution. The CO ligand occupies the sixth axial position of the heme ferrous iron. Eventually, the imidazole group of His81(E7) is expelled from the sixth position and swings out of the distal heme pocket. The flipping motion of the His81 imidazole group accompanies structural readjustments of some residues (Gln62, Phe63, Gln72, and Ser75) in both the CD-corner and D-helix regions of Cgb. On the other hand, no significant structural changes were observed in other Cgb regions, for example, on the proximal side. These structural alterations that occurred as a result of exogenous ligand (CO) binding are clearly different from those observed in other vertebrate hexa-coordinated globins (mouse neuroglobin, Drosophila melanogaster hemoglobin) and penta-coordinated sperm whale myoglobin. The present study provides the structural basis for further discussion of the unique ligand-binding properties of Cgb. Proteins 2011. © 2011 Wiley-Liss, Inc.
REFERENCES
- 1 Burmester T,Ebner B,Weich B,Hankeln T. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 2002; 19: 416–421.
- 2 Kawada N,Kristensen DB,Asahina K,Nakatani K,Minamiyama Y,Seki S,Yoshizato K. Characterization of a stellate cell activation-associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells. J Biol Chem 2001; 276: 25318–25323.
- 3 Makino M,Sugimoto H,Sawai H,Kawada N,Yoshizato K,Shiro Y. High-resolution structure of human cytoglobin: identification of extra N- and C-termini and a new dimerization mode. Acta Crystallogr Sect D: Biol Crystallogr 2006; 62: 671–677.
- 4 Sugimoto H,Makino M,Sawai H,Kawada N,Yoshizato K,Shiro Y. Structural basis of human cytoglobin for ligand binding. J Mol Biol 2004; 339: 873–885.
- 5 Sawai H,Kawada N,Yoshizato K,Nakajima H,Aono S,Shiro Y. Characterization of the heme environmental structure of cytoglobin, a fourth globin in humans. Biochemistry 2003; 42: 5133–5142.
- 6 Hargrove MS,Brucker EA,Stec B,Sarath G,Arredondo-Peter R,Klucas RV,Olson JS,Phillips GN,Jr. Crystal structure of a nonsymbiotic plant hemoglobin. Structure 2000; 8: 1005–1014.
- 7 Dewilde S,Ebner B,Vinck E,Gilany K,Hankeln T,Burmester T,Kreiling J,Reinisch C,Vanfleteren JR,Kiger L,Marden MC,Hundahl C,Fago A,Van Doorslaer S,Moens L. The nerve hemoglobin of the bivalve mollusc Spisula solidissima: molecular cloning, ligand binding studies, and phylogenetic analysis. J Biol Chem 2006; 281: 5364–5372.
- 8 Burmester T,Weich B,Reinhardt S,Hankeln T. A vertebrate globin expressed in the brain. Nature 2000; 407: 520–523.
- 9 Sun Y,Jin K,Mao XO,Zhu Y,Greenberg DA. Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci USA 2001; 98: 15306–15311.
- 10 Sun Y,Jin K,Peel A,Mao XO,Xie L,Greenberg DA. Neuroglobin protects the brain from experimental stroke in vivo. Proc Natl Acad Sci USA 2003; 100: 3497–3500.
- 11 Khan AA,Wang Y,Sun Y,Mao XO,Xie L,Miles E,Graboski J,Chen S,Ellerby LM,Jin K,Greenberg DA. Neuroglobin-overexpressing transgenic mice are resistant to cerebral and myocardial ischemia. Proc Natl Acad Sci USA 2006; 103: 17944–17948.
- 12 Trent JT,III,Hargrove MS. A ubiquitously expressed human hexacoordinate hemoglobin. J Biol Chem 2002; 277: 19538–19545.
- 13 Smagghe BJ,Sarath G,Ross E,Hilbert JL,Hargrove MS. Slow ligand binding kinetics dominate ferrous hexacoordinate hemoglobin reactivities and reveal differences between plants and other species. Biochemistry 2006; 45: 561–570.
- 14 Vallone B,Nienhaus K,Matthes A,Brunori M,Nienhaus GU. The structure of carbonmonoxy neuroglobin reveals a heme-sliding mechanism for control of ligand affinity. Proc Natl Acad Sci USA 2004; 101: 17351–17356.
- 15 de Sanctis D,Ascenzi P,Bocedi A,Dewilde S,Burmester T,Hankeln T,Moens L,Bolognesi M. Cyanide binding and heme cavity conformational transitions in D. melanogaster hexacoordinate hemoglobin. Biochemistry 2006; 45: 10054–10061.
- 16 Kabsch W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Cryst 1993; 26: 795–800.
- 17 Vagin A,Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr Sect D: Biol Crystallogr 1997; 66: 22–25.
- 18 Brünger AT,Adams PD,Clore GM,DeLano WL,Gros P,Grosse-Kunstleve RW,Jiang JS,Kuszewski J,Nilges M,Pannu NS,Read RJ,Rice LM,Simonson T,Warren GL. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D: Biol Crystallogr 1998; 54: 905–921.
- 19 Emsley P,Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D: Biol Crystallogr 2004; 60: 2126–2132.
- 20 DeLano WL. The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific; 2002.
- 21 Laskowski RA. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 1995; 13: 323–330, 307–328.
- 22 Yang F,Phillips GN,Jr. Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. J Mol Biol 1996; 256: 762–774.
- 23 Kachalova GS,Popov AN,Bartunik HD. A steric mechanism for inhibition of CO binding to heme proteins. Science 1999; 284: 473–476.
- 24 Vojtechovsky J,Chu K,Berendzen J,Sweet RM,Schlichting I. Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys J 1999; 77: 2153–2174.
- 25 Arcovito A,Moschetti T,D'Angelo P,Mancini G,Vallone B,Brunori M,Della Longa S. An X-ray diffraction and X-ray absorption spectroscopy joint study of neuroglobin. Arch Biochem Biophys 2008; 475: 7–13.
- 26 Sawai H,Makino M,Mizutani Y,Ohta T,Sugimoto H,Uno T,Kawada N,Yoshizato K,Kitagawa T,Shiro Y. Structural characterization of the proximal and distal histidine environment of cytoglobin and neuroglobin. Biochemistry 2005; 44: 13257–13265.
- 27 Vallone B,Nienhaus K,Brunori M,Nienhaus GU. The structure of murine neuroglobin: novel pathways for ligand migration and binding. Proteins 2004; 56: 85–92.
- 28 de Sanctis D,Dewilde S,Vonrhein C,Pesce A,Moens L,Ascenzi P,Hankeln T,Burmester T,Ponassi M,Nardini M,Bolognesi M. Bishistidyl heme hexacoordination, a key structural property in D. melanogaster hemoglobin. J Biol Chem 2005; 280: 27222–27229.
- 29 Hoy JA,Robinson H,Trent JT,III,Kakar S,Smagghe BJ,Hargrove MS. Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport. J Mol Biol 2007; 371: 168–179.
- 30 Trent JT,III,Kundu S,Hoy JA,Hargrove MS. Crystallographic analysis of Synechocystis cyanoglobin reveals the structural changes accompanying ligand binding in a hexacoordinate hemoglobin. J Mol Biol 2004; 341: 1097–1108.
- 31 Li T,Quillin ML,Phillips GN,Jr,Olson JS. Structural determinants of the stretching frequency of CO bound to myoglobin. Biochemistry 1994; 33: 1433–1446.
- 32 Makinen MW,Houtchens RA,Caughey WS. Structure of carboxymyoglobin in crystals and in solution. Proc Natl Acad Sci USA 1979; 76: 6042–6046.
- 33 Oldfield E,Guo K,Augspurger JD,Dykstra CE. A molecular model for the major conformational substates in heme proteins. J Am Chem Soc 1991; 113: 7537–7541.
- 34 Ramsden J,Spiro TG. Resonance Raman evidence that distal histidine protonation removes the steric hindrance to upright binding of carbon monoxide by myoglobin. Biochemistry 1989; 28: 3125–3128.
- 35 Tsubaki M,Srivastava RB,Yu NT. Resonance Raman investigation of carbon monoxide bonding in (carbon monoxy)hemoglobin and -myoglobin: detection of FeCO stretching and FeCO bending vibrations and influence of the quaternary structure change. Biochemistry 1982; 21: 1132–1140.
- 36 Fuchsman WH,Appleby CA. CO and O2 complexes of soybean leghemoglobins: pH effects upon infrared and visible spectra. Comparisons with CO and O2 complexes of myoglobin and hemoglobin. Biochemistry 1979; 18: 1309–1321.
- 37 Morikis D,Champion PM,Springer BA,Sligar SG. Resonance raman investigations of site-directed mutants of myoglobin: effects of distal histidine replacement. Biochemistry 1989; 28: 4791–4800.
- 38 Traylor TG,Deardurff LA,Coletta M,Ascenzi P,Antonini E,Brunori M. Reactivity of ferrous heme proteins at low pH. J Biol Chem 1983; 258: 12147–12148.
- 39 Antonini E,Brunori M. Hemoglobin and myoglobin in their reactions whith ligands. Amsterdam: North-Holland Publishing Company; 1971. 436 p.
- 40 Couture M,Burmester T,Hankeln T,Rousseau DL. The heme environment of mouse neuroglobin. Evidence for the presence of two conformations of the heme pocket. J Biol Chem 2001; 276: 36377–36382.
- 41 Uzan J,Dewilde S,Burmester T,Hankeln T,Moens L,Hamdane D,Marden MC,Kiger L. Neuroglobin and other hexacoordinated hemoglobins show a weak temperature dependence of oxygen binding. Biophys J 2004; 87: 1196–1204.
- 42 Hankeln T,Ebner B,Fuchs C,Gerlach F,Haberkamp M,Laufs TL,Roesner A,Schmidt M,Weich B,Wystub S,Saaler-Reinhardt S,Reuss S,Bolognesi M,De Sanctis D,Marden MC,Kiger L,Moens L,Dewilde S,Nevo E,Avivi A,Weber RE,Fago A,Burmester T. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J Inorg Biochem 2005; 99: 110–119.
- 43 Wakasugi K,Nakano T,Morishima I. Oxidized human neuroglobin acts as a heterotrimeric Galpha protein guanine nucleotide dissociation inhibitor. J Biol Chem 2003; 278: 36505–36512.
- 44 Geuens E,Brouns I,Flamez D,Dewilde S,Timmermans JP,Moens L. A globin in the nucleus! J Biol Chem 2003; 278: 30417–30420.