Nitric oxide conduction by the brain aquaporin AQP4
Yi Wang
Center for Biophysics and Computational Biology, Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Search for more papers by this authorCorresponding Author
Emad Tajkhorshid
Center for Biophysics and Computational Biology, Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Center for Biophysics and Computational Biology, Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801===Search for more papers by this authorYi Wang
Center for Biophysics and Computational Biology, Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Search for more papers by this authorCorresponding Author
Emad Tajkhorshid
Center for Biophysics and Computational Biology, Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Center for Biophysics and Computational Biology, Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801===Search for more papers by this authorAbstract
Involvement of aquaporins in gas conduction across the membrane and the physiological significance of this process have attracted marked attention from both experimental and theoretical studies. Previous work demonstrated that AQP1 is permeable to both CO2 and O2. Here we employ various simulation techniques to examine the permeability of the brain aquaporin AQP4 to NO and O2 and to describe energetics and pathways associated with these phenomena. The energy barrier to NO and O2 permeation through AQP4 central pore is found to be only ∼3 kcal mol−1. The results suggest that the central pore of AQP4, similar to that of AQP1, can indeed conduct gas molecules. Interestingly, despite a longer and narrower central pore, AQP4 appears to provide an energetically more favorable permeation pathway for gas molecules than AQP1, mainly due to the different orientation of its charged residues near the pore entrance. Although the low barrier against gas permeation through AQP4 indicates that it can participate in gas conduction across the cellular membrane, physiological relevance of the phenomenon remains to be established experimentally, particularly since pure lipid bilayers appear to present a more favorable pathway for gas conduction across the membrane. With an energy well of −1.8 kcal mol−1, the central pore of AQP4 may also act as a reservoir for NO molecules to accumulate in the membrane. Proteins 2010. © 2009 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22595_sm_suppinfo.pdf341.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Preston GM,Carroll TP,Guggino WB,Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 1992; 256: 385–387.
- 2 Agre P,Kozono D. Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 2003; 555: 72–78.
- 3 King L,Agre P. From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 2004; 5: 687–698.
- 4 Fu D, Libson A, Miercke LJW, Weitzman C, Nollert P, Krucinski J, Stroud RM. Structure of a glycerol conducting channel and the basis for its selectivity. Science 2000; 290: 481–486.
- 5 Tajkhorshid E, Nollert P, Jensen MØ, Miercke LJW, O'Connell J, Stroud RM, Schulten K. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 2002; 296: 525–530.
- 6 Savage DF,Egea PF,Robles-Colmenares Y,O'Connell JD,III,Stroud RM. Architecture and selectivity in aquaporins: 2.5 Å X-ray structure of aquaporin Z. PLoS Biol 2003; 1: E72.
- 7 Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y. Structural determinants of water permeation through aquaporin-1. Nature 2000; 407: 599–605.
- 8 Sui H,Han BG,Lee JK,Walian P,Jap BK. Structural basis of water-specific transport through the AQP1 water channel. Nature 2001; 414: 872–878.
- 9 Lee JK, Kozono D, Remis J, Kitagawa Y, Agre P, Stroud RM. Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 Å. Proc Natl Acad Sci USA 2005; 102: 18932–18937.
- 10 Hiroaki Y, Tani K, Kamegawa A, Gyobu N, Nishikawa K, Suzuki H, Walz T, Sasaki S, Mitsuoka K, Kimura K, Mizoguchi A, Fujiyoshi Y. Implications of the Aquaporin-4 structure on array formation and cell adhesion. J Mol Biol 2006; 355: 628–639.
- 11 Gonen T,Sliz P,Kistler J,Cheng Y,Walz T. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 2004; 429: 193–197.
- 12 Harries WEC,Akhavan D,Miercke LJW,Khademi S,Stroud R. The channel architecture of aquaporin 0 at a 2.2-Å resolution. Proc Natl Acad Sci USA 2004; 101: 14045–14050.
- 13 Scheuring S,Busselez J,Lévy D. Structure of the dimeric PufX-containing core complex of Rhodobacter blasticus by in situ atomic force microscopy. J Biol Chem 2005; 280: 1426–1431.
- 14 Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P. Structural mechanism of plant aquaporin gating. Nature 2006; 439: 688–694.
- 15 Horsefield R, Nordén K, Fellert M, Backmark A, Törnroth-Horsefield S, van Scheltinga AT, Kvassman J, Kjellbom P, Johanson U, Neutze R. High-resolution X-ray structure of human aquaporin 5. Proc Natl Acad Sci USA 2008; 105: 13327–13332.
- 16 Burykin A,Warshel A. On the origin of the electrostatic barrier for proton transport in aquaporin. FEBS Lett 2004; 570: 41–46.
- 17 de Groot BL,Grubmüller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 2001; 294: 2353–2357.
- 18 de Groot BL,Grubmüller H. The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol 2005; 15: 176–183.
- 19 Hedfalk K, Törnroth-Horsefield S, Nyblom M, Johanson U, Kjellbom P, Neutze R. Aquaporin gating. Curr Opin Struct Biol 2006; 16: 447–456.
- 20 Nyblom M, Frick A, Wang Y, Ekvall M, Hallgren K, Hedfalk K, Neutze R, Tajkhorshid E, Törnroth-Horsefield S. Structural and functional analysis of SoPIP2;1 mutants add insight into plant aquaporin gating. J Mol Biol 2009; 387: 653–668.
- 21 Heller KB,Lin EC,Wilson TH. Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J Bacteriol 1980; 144: 274–278.
- 22 Borgnia MJ,Agre P. Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc Natl Acad Sci USA 2001; 98: 2888–2893.
- 23 Borgnia M,Nielsen S,Engel A,Agre P. Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 1999; 68: 425–458.
- 24 Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M. Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 2002; 277: 39873–39879.
- 25 Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA 2002; 99: 6053–6058.
- 26 Yool AJ,Weinstein AM. New roles for old holes: ion channel function in aquaporin-1. News Physio Sci 2002; 17: 68–72.
- 27 Yu J,Yool AJ,Schulten K,Tajkhorshid E. Mechanism of gating and ion conductivity of a possible tetrameric pore in Aquaporin-1. Structure 2006; 14: 1411–1423.
- 28 Uehlein N,Lovisolo C,Siefritz F,Kaldenhoff R. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 2003; 425: 734–737.
- 29 Nakhoul N,Davis B,Romero M,Boron W. Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol 1998; 274: C543–548.
- 30 Cooper G,Boron W. Effect of PCMBS on CO2 permeability of Xenopus Oocytes expressing aquaporin 1 or its C189S mutant. Am J Physiol 1998; 275: C1481–C1486.
- 31 Prasad GVT,Coury L,Finn F,Zeidel M. Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 1998; 273: 33123–33126.
- 32 Cooper G,Zhou Y,Bouyer P,Grichtchenko I,Boron W. Transport of volatile solutes through AQP1. J Physiol 2002; 542: 17–29.
- 33 Terashima I,Ono K. Effects of HgCl2 on CO2 dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant Cell Physiol 2002; 43: 70–78.
- 34
Blank M,Ehmke H.
Aquaporin-1 and HCO
-Cl− transporter-mediated transport of CO2 across the human erythrocyte membrane. J Physiol 2003; 550: 419–29.
- 35 Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M. Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 2004; 45: 521–529.
- 36 Endeward V, Musa-Aziz R, Cooper G, Chen L, Pelletier M, Virkki L, Supuran C, King L, Boron W. Evidence that Aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J 2006; 20: 1974–1981.
- 37 Herrera M,Hong NJ,Garvin JL. Aquaporin-1 transports NO across cell membranes. Hypertension 2006; 48: 157–164.
- 38 Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. Function of nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 2008; 20: 648–657.
- 39 Missner A, Küler P, Saparov S, Sommer K, Matthai J, Zeidel M, Pohl P. Carbon dioxide transport through membranes. JBiol Chem 2008; 283: 25340–25347.
- 40 Herrera M,Garvin J. Novel role of AQP-1 in no-dependent vasorelaxation. Am J Physiol Renal Physiol 2007; 292: F1443–F1451.
- 41 Yang B, Fukuda N, van Hoek A, Matthay MA, Ma T, Verkman AS. Carbon dioxide permeability of aquaporin-1 measured in erythrocytes and lung of aquaporin-1 null mice and in reconstituted proteoliposomes. J Biol Chem 2000; 275: 2682–2692.
- 42 Fang X,Yang B,Matthay M,Verkman A. Evidence against aquaporin-1-dependent CO permeability in lung and kidney. J Physiol 2002; 542: 63–69.
- 43 Verkman A. Does aquaporin-1 pass gas? An opposing view. J Physiol 2002; 542: 31.
- 44 Wang Y,Cohen J,Boron WF,Schulten K,Tajkhorshid E. Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J Struct Biol 2007; 157: 534–544.
- 45 Hub JS,de Groot BL. Does CO permeate through Aquaporin-1? Biophys J 2006; 91: 842–848.
- 46 Amiry-Moghaddam M, Otsuka T, Hurn P, Traystman R, Haug F, Froehner S, Adams M, Neely J, Agre P, Ottersen O, Bhardwaj A. An alpha-syntrophin-dependent pool of aqp4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 2003; 100: 2106–2111.
- 47 Sulyok E,Vajda Z,Dóczi T,Nielsen S. Aquaporins and the central nervous system. Acta Neurochir (Wien) 2004; 146: 955–960.
- 48 Manley GT,Binder DK,Papadopoulos MC,Verkman AS. New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience 2004; 129: 983–991.
- 49 Verkman A. More than just water channels: unexpected cellular roles of aquaporins. J Chem Soc 2005; 118: 3225–3232.
- 50 Rash J,Davidson K,Yasumura T,Furman C. Freeze-fracture and immunogold analysis of aquaporin-4 (AQP4) square arrays, with models of AQP4 lattice assembly. Neuroscience 2004; 129: 915–934.
- 51 Rash J,Yasumura T,Hudson C,Agre P,Nielsen S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 1998; 95: 11981–11986.
- 52 Suzuki H,Nishikawa K,Hiroaki Y,Fujiyoshi Y. Formation of aquaporin-4 arrays is inhibited by palmitoylation of n-terminal cysteine residues. Biochim Biophys Acta 2008; 1778: 1181–1189.
- 53 Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep 1999; 19: 51–71.
- 54 Ignarro LJ. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 2002; 53: 503–514.
- 55 Murad F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci Rep 2004; 24: 452–474.
- 56 Pacher P,Beckman J,Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007; 87: 315–424.
- 57 Wang Y,Ohkubo YZ,Tajkhorshid E. Gas conduction of lipid bilayers and membrane channels. In: S Feller, editor. Current topics in membranes: computational modeling of membrane bilayers. Oxford, UK: Elsevier; 2008. pp 343–367, Chapter 12.
- 58 Humphrey W,Dalke A,Schulten K. VMD—visual molecular dynamics. J Mol Graphics 1996; 14: 33–38.
- 59 Cohen J,Kim K,King P,Seibert M,Schulten K. Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Structure 2005; 13: 1321–1329.
- 60 Cohen J,Arkhipov A,Braun R,Schulten K. Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin. Biophys J 2006; 91: 1844–1857.
- 61 Roux B. The calculation of the potential of mean force using computer simulations. Comput Phys Commun 1995; 91: 275–282.
- 62 Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. Scalable molecular dynamics with NAMD. J Comp Chem 2005; 26: 1781–1802.
- 63 MacKerell A,Jr,Bashford D,Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998; 102: 3586–3616.
- 64 Feller SE,Zhang YH,Pastor RW,Brooks BR. Constant pressure molecular dynamics simulation—the Langevin piston method. J Chem Phys 1995; 103: 4613–4621.
- 65 Darden T,York D,Pedersen L. Particle mesh Ewald. An N log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089–10092.
- 66 de Groot BL,Frigato T,Helms V,Grubmüller H. The mechanism of proton exclusion in the aquaporin-1 water channel. J Mol Biol 2003; 333: 279–293.
- 67 Zhu F,Tajkhorshid E,Schulten K. Molecular dynamics study of aquaporin-1 water channel in a lipid bilayer. FEBS Lett 2001; 504: 212–218.
- 68 Hub J,de Groot B. Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci USA 2008; 105: 1198–1203.
- 69 Smart O,Goodfellow J,Wallace B. The pore dimensions of Gramicidin A. Biophys J 1993; 65: 2455–2460.
- 70 Garthwaite J. Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 2008; 27: 2783–2802.
- 71 Lin L,Taktakishvili O,Talman W. Identification and localization of cell types that express endothelial and neuronal nitric oxide synthase in the rat nucleus tractus solitarii. Brain Res 2007; 1171: 42–51.