Thermal stabilization of the protozoan Entamoeba histolytica alcohol dehydrogenase by a single proline substitution
Edi Goihberg
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
Search for more papers by this authorOrly Dym
Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
Israel Structural Proteomics Center (ISPC), Weizmann Institute of Science, Rehovot 76100, Israel
Search for more papers by this authorShoshana Tel-Or
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
Search for more papers by this authorLinda Shimon
Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
Search for more papers by this authorFelix Frolow
Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel
The Daniella Rich Institute for Structural Biology, Tel-Aviv University, Ramat Aviv 69978, Israel
Search for more papers by this authorMoshe Peretz
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
Search for more papers by this authorCorresponding Author
Yigal Burstein
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel===Search for more papers by this authorEdi Goihberg
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
Search for more papers by this authorOrly Dym
Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
Israel Structural Proteomics Center (ISPC), Weizmann Institute of Science, Rehovot 76100, Israel
Search for more papers by this authorShoshana Tel-Or
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
Search for more papers by this authorLinda Shimon
Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
Search for more papers by this authorFelix Frolow
Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel
The Daniella Rich Institute for Structural Biology, Tel-Aviv University, Ramat Aviv 69978, Israel
Search for more papers by this authorMoshe Peretz
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
Search for more papers by this authorCorresponding Author
Yigal Burstein
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel===Search for more papers by this authorAbstract
Analysis of the three-dimensional structures of two closely related thermophilic and hyperthermophilic alcohol dehydrogenases (ADHs) from the respective microorganisms Entamoeba histolytica (EhADH1) and Thermoanaerobacter brockii (TbADH) suggested that a unique, strategically located proline residue (Pro275) at the center of the dimerization interface might be crucial for maintaining the thermal stability of TbADH. To assess the contribution of Pro275 to the thermal stability of the ADHs, we applied site-directed mutagenesis to replace Asp275 of EhADH1 with Pro (D275P-EhADH1) and conversely Pro275 of TbADH with Asp (P275D-TbADH). The results indicate that replacing Asp275 with Pro significantly enhances the thermal stability of EhADH1 (ΔT1/2 ≤ +10°C), whereas the reverse mutation in the thermophilic TbADH (P275D-TbADH) reduces the thermostability of the enzyme (ΔT1/2 ≤ −18.8°C). Analysis of the crystal structures of the thermostabilized mutant D275P-EhADH1 and the thermocompromised mutant P275D-TbADH suggest that a proline residue at position 275 thermostabilized the enzymes by reducing flexibility and by reinforcing hydrophobic interactions at the dimer–dimer interface of the tetrameric ADHs. Proteins 2008. © 2008 Wiley-Liss, Inc.
REFERENCES
- 1 Fitter J. Structural and dynamical features contributing to thermostability in alpha-amylases. Cell Mol Life Sci 2005; 62: 1925–1937.
- 2 Siddiqui KS,Cavicchioli R. Cold-adapted enzymes. Annu Rev Biochem 2006; 75: 403–433.
- 3 Jaenicke R. Stability and stabilization of globular proteins in solution. J Biotechnol 2000; 79: 193–203.
- 4 Unsworth LD,van der Oost J,Koutsopoulos S. Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications. FEBS J 2007; 274: 4044–4056.
- 5 Zhou XX,Wang YB,Pan YJ,Li WF. Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids (Published online ahead of print: August 21, 2007).
- 6 Wiseman RL,Green NS,Kelly JW. Kinetic stabilization of an oligomeric protein under physiological conditions demonstrated by a lack of subunit exchange: implications for transthyretin amyloidosis. Biochemistry 2005; 44: 9265–9274.
- 7 Mitra N,Srinivas VR,Ramya TN,Ahmad N,Reddy GB,Surolia A. Conformational stability of legume lectins reflect their different modes of quaternary association: solvent denaturation studies on concanavalin A and winged bean acidic agglutinin. Biochemistry 2002; 41: 9256–9263.
- 8 Bjork A,Dalhus B,Mantzilas D,Eijsink VG,Sirevag R. Stabilization of a tetrameric malate dehydrogenase by introduction of a disulfide bridge at the dimer-dimer interface. J Mol Biol 2003; 334: 811–821.
- 9 Nakka M,Iyer RB,Bachas LG. Intersubunit disulfide interactions play a critical role in maintaining the thermostability of glucose-6-phosphate dehydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. Protein J 2006; 25: 17–21.
- 10 Stroppolo ME,Malvezzi-Campeggi F,Mei G,Rosato N,Desideri A. Role of the tertiary and quaternary structures in the stability of dimeric copper, zinc superoxide dismutases. Arch Biochem Biophys 2000; 377: 215–218.
- 11 Esposito L,Sica F,Raia CA,Giordano A,Rossi M,Mazzarella L,Zagari A. Crystal structure of the alcohol dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus at 1.85 A resolution. J Mol Biol 2002; 318: 463–477.
- 12 Guy JE,Isupov MN,Littlechild JA. The structure of an alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix. J Mol Biol 2003; 331: 1041–1051.
- 13 Levin I,Meiri G,Peretz M,Burstein Y,Frolow F. The ternary complex of Pseudomonas aeruginosa alcohol dehydrogenase with NADH and ethylene glycol. Protein Sci 2004; 13: 1547–1556.
- 14 Bogin O,Levin I,Hacham Y,Tel-Or S,Peretz M,Frolow F,Burstein Y. Structural basis for the enhanced thermal stability of alcohol dehydrogenase mutants from the mesophilic bacterium Clostridium beijerinckii: contribution of salt bridging. Protein Sci 2002; 11: 2561–2574.
- 15 Kumar A,Shen PS,Descoteaux S,Pohl J,Bailey G,Samuelson J. Cloning and expression of an NADP(+)-dependent alcohol dehydrogenase gene of Entamoeba histolytica. Proc Natl Acad Sci USA 1992; 89: 10188–10192.
- 16 Peretz M,Bogin O,Tel-Or S,Cohen A,Li G,Chen J-S,Burstein Y. Molecular cloning, nucleotide sequencing, and expression of genes encoding alcohol dehydrogenases from the thermophile Thermoanaerobacter brockii and the mesophile Clostridium beijerinckii. Anaerobe 1997; 3: 259–270.
- 17 Shimon LJ,Peretz M,Goihberg E,Burstein Y,Frolow F. Thermophilic alcohol dehydrogenase from the mesophile Entamoeba histolytica: crystallization and preliminary X-ray characterization. Acta Crystallogr D Biol Crystallogr 2002; 58 (Part 3): 546–548.
- 18 Korkhin Y,Kalb AJ,Peretz M,Bogin O,Burstein Y,Frolow F. Oligomeric integrity—the structural key to thermal stability in bacterial alcohol dehydrogenases. Protein Sci 1999; 8: 1241–1249.
- 19 Shimon LJ,Goihberg E,Peretz M,Burstein Y,Frolow F. Structure of alcohol dehydrogenase from Entamoeba histolytica. Acta Crystallogr D Biol Crystallogr 2006; 62 (Part 5): 541–547.
- 20 Bogin O,Peretz M,Hacham Y,Korkhin Y,Frolow F,Kalb AJ,Burstein Y. Enhanced thermal stability of Clostridium beijerinckii alcohol dehydrogenase after strategic substitution of amino acid residues with prolines from the homologous thermophilic Thermoanaerobacter brockii alcohol dehydrogenase. Protein Sci 1998; 7: 1156–1163.
- 21 Goihberg E,Dym O,Tel-Or S,Levin I,Peretz M,Burstein Y. A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase. Proteins 2007; 66: 196–204.
- 22 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.
- 23 Sanger F,Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 1975; 94: 441–448.
- 24 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.
- 25 Otwinowski Z,Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol A 1997; 276: 307–326.
- 26 Vagin A,Teplyakov A. MOLREP: an automated program for molecular replacement. J Appl Crystallogr 1997; 30: 1022–1025.
- 27 Murshudov GN,Vagin AA,Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 1997; 53 (Part 3): 240–255.
- 28 Emsley P,Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60 (Part 12): 2126–2132.
- 29 Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph 1990; 8: 52–56, 29.
- 30 Laskowski RA,Macarthur MW,Moss DS,Thornton JM. Procheck—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993; 26: 283–291.
- 31 Storoni LC,McCoy AJ,Read RJ. Likelihood-enhanced fast rotation functions. Acta Crystallogr D Biol Crystallogr 2004; 60 (Part 3): 432–438.
- 32 Brunger AT,Adams PD,Clore GM,DeLano WL,Gros P,Grosse-Kunstleve RW,Jiang JS,Kuszewski J,Nilges M,Pannu NS,Read RJ,Rice LM,Simonson T,Warren GL. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 1998; 54: 905–921.
- 33 Jones TA,Kjeldgaard M. Electron-density map interpretation. Methods Enzymol B 1997; 277: 173–208.
- 34 Prajapati RS,Das M,Sreeramulu S,Sirajuddin M,Srinivasan S,Krishnamurthy V,Ranjani R,Ramakrishnan C,Varadarajan R. Thermodynamic effects of proline introduction on protein stability. Proteins 2007; 66: 480–491.
- 35 Kelch BA,Agard DA. Mesophile versus thermophile: insights into the structural mechanisms of kinetic stability. J Mol Biol 2007; 370: 784–795.