Viral cell recognition and entry
Corresponding Author
Michael G. Rossmann
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907–1392
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907–1392Search for more papers by this authorCorresponding Author
Michael G. Rossmann
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907–1392
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907–1392Search for more papers by this authorAbstract
Rhinovirus infection is initiated by the recognition of a specific cell-surface receptor. The major group of rhino-virus serotypes attach to intercellular adhesion molecule-1 (ICAM-1). The attachment process initiates a series of conformational changes resulting in the loss of genomic RNA from the virion. X-ray crystallography and sequence comparisons suggested that a deep crevice or canyon is the site on the virus recognized by the cellular receptor molecule. This has now been verified by electron microscopy of human rhinovirus 14 (HRV14) and HRV16 complexed with a soluble component of ICAM-1.
A hydrophobic pocket underneath the canyon is the site of binding of various hydrophobic drug compounds that can inhibit attachment and uncoating. This pocket is also associated with an unidentified, possibly cellular in origin, “pocket factor.” The pocket factor binding site overlaps the binding site of the receptor. It is suggested that competition between the pocket factor and receptor regulates the conformational changes required for the initiation of the entry of the genomic RNA into the cell.
References
- Abad-Zapatero C, Abdel-Meguid SS, Johnson JE, Leslie AGW, Rayment I, Rossmann MG, Suck D, Tsukihara T. 1980. Structure of southern bean mosaic virus at 2.8 Å resolution. Nature (Lond) 286: 33–39.
- Abraham G, Colonno RJ. 1984. Many rhinovirus serotypes share the same cellular receptor. J Virol 51: 340–345.
- Acharya R, Fry E, Logan D, Stuart D, Brown F, Fox G, Rowlands D. 1990. The three-dimensional structure of foot-and-mouth disease virus. In: MA Brinton, FX Heinz, eds. New aspects of positive-strand RNA viruses. Washington, D.C.: American Society for Microbiology. pp 211–217.
- Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F. 1989. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature (Lond) 337: 709–716.
- Arnold E, Luo M, Vriend G, Rossmann MG, Palmenberg AC, Parks GD, Nicklin MJH, Wimmer E. 1987. Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci USA 84: 21–25.
- Arnold E, Rossmann MG. 1990. Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3.0 Å. J Mol Biol 211: 763–801.
- Arthos J, Dean KC, Chaikin MA, Fornwald JA, Sathe G, Sattentau QJ, Clapham PR, Weiss RA, McDougal JS, Pietropaolo C, Axel R, Truneh A, Maddon PJ, Sweet RW. 1989. Identification of the residues in human CD4 critical for the binding of HIV. Cell 57: 469–481.
- Badger J, Minor I, Kremer MJ, Oliveira MA, Smith TJ, Griffith JP, Guerin DMA, Krishnaswamy S, Luo M, Rossmann MG, McKinlay MA, Diana GD, Dutko FJ, Fancher M, Rueckert RR, Heinz BA. 1988. Structural analysis of a series of antiviral agents complexed with human rhinovirus 14. Proc Natl Acad Sci USA 85: 3304–3308.
- Berendt AR, McDowall A, Craig AG, Bates PA, Sternberg MJE, Marsh K, Newbold CI, Hogg N. 1992. The binding site on ICAM-1 for Plasmodium falciparum-infected erythrocytes overlaps, but is distinct from, the LFA-1 binding site. Cell 68: 71–81.
- Bergelson JM, Shepley MP, Chan BMC, Hemler ME, Finberg RW. 1992. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 255: 1718–1720.
- Bibler-Muckelbauer JK, Kremer MJ, Rossmann MG, Diana GD, Dutko FJ, Pevear DC, McKinlay MA. 1994. Human rhinovirus 14 complexed with fragments of active antiviral compounds. Virology 202: 360–369.
- Brady RL, Dodson EJ, Dodson GG, Lange G, Davis SJ, Williams AF, Barclay AN. 1993. Crystal structure of domains 3 and 4 of rat CD4: Relation to the NH2-terminal domains. Science 260: 979–983.
- Brown KE, Anderson SM, Young NS. 1993. Erythrocyte P antigen: Cellular receptor for B19 parvovirus. Science 262: 114–117.
- Burness ATH. 1981. Glycophorin and sialylated components as receptors for viruses. In: K Lonberg-Holm, L Philipson, eds. Virus receptors part 2. London: Chapman and Hall. pp 64–84.
- Burness ATH, Pardoe IU. 1983. A sialoglycopeptide from human erythrocytes with receptor-like properties for encephalomyocarditis and influenza viruses. J Gen Virol 64: 1137–1148.
- Chapman MS, Rossmann MG. 1993. Comparison of surface properties of picornaviruses: Strategies for hiding the receptor site from immune surveillance. Virology 195: 745–756.
- Chen Z, Stauffacher C, Li Y, Schmidt T, Bomu W, Kamer G, Shanks M, Lomonossoff G, Johnson JE. 1989. Protein-RNA interactions in an icosahedral virus at 3.0 Å resolution. Science 245: 154–159.
- Choi AHC, Paul RW, Lee PWK. 1990. Reovirus binds to multiple plasma membrane proteins of mouse L fibroblasts. Virology 178: 316–320.
- Chow M, Newman JFE, Filman D, Hogle JM, Rowlands DJ, Brown F. 1987. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature (Lond) 327: 482–486.
- Colonno RJ. 1992. Molecular interactions between human rhinoviruses and their cellular receptors. Semin Virol 3: 101–107.
- Colonno RJ, Callahan PL, Long WJ. 1986. Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J Virol 57: 7–12.
- Colonno RJ, Condra JH, Mizutani S, Callahan PL, Davies ME, Murcko MA. 1988. Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proc Natl Acad Sci USA 85: 5449–5453.
- Crowell RL. 1966. Specific cell-surface alteration by enteroviruses as reflected by viral-attachment interference. J Bacteriol 91: 198–204.
- Dalgleish AG, Beverley PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA. 1984. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature (Lond) 312: 763–767.
- Diana GD, Kowalczyk P, Treasurywala AM, Oglesby RC, Pevear DC, Dutko FJ. 1992. CoMFA analysis of the interactions of antipicornavirus compounds in the binding pocket of human rhinovirus-14. J Med Chem 35: 1002–1006.
- Diana GD, Treasurywala AM, Bailey TR, Oglesby RC, Pevear DC, Dutko FJ. 1990. A model for compounds active against human rhipovirus-14 based on X-ray crystallography data. J Med Chem 33: 1306–1311.
-
Dutko FJ,
McKinlay MA,
Rossmann MG.
1989. Antiviral compounds bind to a specific site within human rhinovirus. In:
AL Notkins,
MBA Oldstone, eds.
Concepts in viral pathogenesis III.
New York:
Springer-Verlag.
pp 330–336.
10.1007/978-1-4613-8890-6_39 Google Scholar
- Eriksson AE, Baase WA, Wozniak JA, Matthews BA. 1992a. A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Nature (Lond) 355: 371–373.
- Eriksson AE, Baase WA, Zhang XJ, Heinz DW, Blaber M, Baldwin EP, Matthews BW. 1992b. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255: 178–183.
- Everaert L, Vrijsen R, Boeyé A. 1989. Eclipse products of poliovirus after cold-synchronized infection of HeLa cells. Virology 171: 76–82.
- Filman DJ, Syed R, Chow M, Macadam AJ, Minor PD, Hogle JM. 1989. Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J 8: 1567–1579.
- Fisher AJ, McKinney BR, Schneemann A, Rueckert RR, Johnson JE. 1993. Crystallization of viruslike particles assembled from flock house virus coat protein expressed in a baculovirus system. J Virol 67: 2950–2953.
- Flore O, Fricks CE, Filman DJ, Hogle JM. 1990. Conformational changes in poliovirus assembly and cell entry. Semin Virol 1: 429–438.
- Fox MP, McKinlay MA, Diana GD, Dutko FJ. 1991. Binding affinities of structurally related human rhinovirus capsid-binding compounds are correlated to their activities against human rhinovirus type 14. Antimicrob Agents Chemother 35: 1040–1047.
- Fox MP, Otto MJ, McKinlay MA. 1986. The prevention of rhinovirus and poliovirus uncoating by WIN 51711: A new antiviral drug. Antimicrob Agents Chemother 30: 110–116.
- Freistadt MS, Racaniello VR. 1991. Mutational analysis of the cellular receptor for poliovirus. J Virol 65: 3873–3876.
- Fricks CE, Hogle JM. 1990. Cell-induced conformational change in polio-virus: Externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol 64: 1934–1945.
- Fried H, Cahan LD, Paulson JC. 1981. Polyoma virus recognizes specific sialyloligosaccharide receptors on host cells. Virology 109: 188–192.
- Giranda VL, Chapman MS, Rossmann MG. 1990. Modeling of the human intercellular adhesion molecule-1, the human rhinovirus major group receptor. Proteins Struct Funct Genet 7: 227–233.
- Giranda VL, Heinz BA, Oliveira MA, Minor I, Kim KH, Kolatkar PR, Rossmann MG, Rueckert RR. 1992. Acid-induced structural changes in human rhinovirus 14: Possible role in uncoating. Proc Natl Acad Sci USA 89: 10213–10217.
- Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, Kamarck ME, McClelland A. 1989. The major human rhinovirus receptor is ICAM-1. Cell 56: 839–847.
- Greve JM, Forte CP, Marlor CW, Meyer AM, Hoover-Litty H, Wunderlich D, McClelland A. 1991. Mechanisms of receptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1. J Virol 65: 6015–6023.
- Gromeier M, Wetz K. 1990. Kinetics of poliovirus uncoating in HeLa cells in a nonacidic environment. J Virol 64: 3590–3597.
- Gruenberger M, Pevear D, Diana GD, Kuechler E, Blaas D. 1991. Stabilization of human rhinovirus serotype 2 against pH-induced conformational change by antiviral compounds. J Gen Virol 72: 431–433.
- Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G. 1978. Tomato bushy stunt virus at 2.9 Å resolution. Nature (Lond) 276: 368–373.
- Heinz BA, Rueckert RR, Shepard DA, Dutko FJ, McKinlay MA, Fancher M, Rossmann MG, Badger J, Smith TJ. 1989. Genetic and molecular analyses of spontaneous mutants of human rhinovirus 14 that are resistant to an antiviral compound. J Virol 63: 2476–2485.
- Heinz BA, Shepard DA, Rueckert RR. 1990. Escape mutant analysis of a drug-binding site can be used to map functions in the rhinovirus capsid. In: WG Laver, GM Air, eds. Use of X-ray crystallography in the design of antiviral agents. San Diego: Academic Press. pp 173–186.
- Hofer F, Gruenberger M, Kowalski H, Machat H, Huettinger M, Kuechler E, Blaas D. 1994. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci USA 91: 1839–1842.
- Hogle JM, Chow M, Filman DJ. 1985. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229: 1358–1365.
- Hoover-Litty H, Greve JM. 1993. Formation of rhinovirus-soluble ICAM-1 complexes and conformational changes in the virion. J Virol 67: 390–397.
- Hosur MV, Schmidt T, Tucker RC, Johnson JE, Gallagher TM, Selling BH, Rueckert RR. 1987. Structure of an insect virus at 3.0 Å resolution. Proteins Struct Funct Genet 2: 167–176.
- Kim JW, Closs EI, Albritton LM, Cunningham JM. 1991. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature (Lond) 352: 725–728.
- Kim KH, Willingmann P, Gong ZX, Kremer MJ, Chapman MS, Minor I, Oliveira MA, Rossmann MG, Andries K, Diana GD, Dutko FJ, McKinlay MA, Pevear DC. 1993. A comparison of the anti-rhinoviral drug binding pocket in HRV14 and HRV1A. J Mol Biol 230: 206–225.
- Kim S, Smith TJ, Chapman MS, Rossmann MG, Pevear DC, Dutko FJ, Felock PJ, Diana GD, McKinlay MA. 1989. Crystal structure of human rhinovirus serotype 1A (HRV1A). J Mol Biol 210: 91–111.
- Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman JC, Montagnier L. 1984. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature (Lond) 312: 767–768.
- Koike S, Ise I, Nomoto A. 1991. Functional domains of the poliovirus receptor. Proc Natl Acad Sci USA 88: 4104–4108.
- Koike S, Ise I, Sato Y, Mitsui K, Horie H, Umeyama H, Nomoto A. 1992. Early events of poliovirus infection. Semin Virol 3: 109–115.
- Kolatkar PR, Oliveira MA, Rossmann MG, Robbins AH, Katti SK, Hoover-Litty H, Forte C, Greve JM, McClelland A, Olson NH. 1992. Preliminary X-ray crystallographic analysis of intercellular adhesion molecule-1. J Mol Biol 225: 1127–1130.
- Korant BD, Lonberg-Holm K, Yin FH, Noble-Harvey J. 1975. Fractionation of biologically active and inactive populations of human rhinovirus type 2. Virology 63: 384–394.
- Larson SB, Koszelak S, Day J, Greenwood A, Dodds JA, McPherson A. 1993. Three-dimensional structure of satellite tobacco mosaic virus at 2.9 Å resolution. J Mol Biol 231: 375–391.
- Lee WM, Monroe SS, Rueckert RR. 1993. Role of maturation cleavage in infectivity of picornaviruses: Activation of an infectosome. J Virol 67: 2110–2122.
- Liljas L, Unge T, Jones TA, Fridborg K, Lövgren S, Skoglund U, Strandberg B. 1982. Structure of satellite tobacco necrosis virus at 3.0 Å resolution. J Mol Biol 159: 93–108.
- Lineberger DW, Graham DJ, Tomassini JE, Colonno RJ. 1990. Antibodies that block rhinovirus attachment map to domain 1 of the major group receptor. J Virol 64: 2582–2587.
- Lonberg-Holm K, Crowell RL, Philipson L. 1976. Unrelated animal viruses share receptors. Nature (Lond) 259: 679–681.
- Lonberg-Holm K, Korant BD. 1972. Early interaction of rhinoviruses with host cells. J Virol 9: 29–40.
- Luo M, Vriend G, Kamer G, Minor I, Arnold E, Rossmann MG, Boege U, Scraba DG, Duke GM, Palmenberg AC. 1987. The atomic structure of Mengo virus at 3.0 Å resolution. Science 235: 182–191.
- Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R. 1986. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47: 333–348.
- Madshus IH, Olsnes S, Sandvig K. 1984a. Different pH requirements for entry of the two picornaviruses, human rhinovirus 2 and murine enceph-alomyocarditis virus. Virology 139: 346–357.
- Madshus IH, Olsnes S, Sandvig K. 1984b. Mechanism of entry into the cytosol of poliovirus type 1: Requirement for low pH. J Cell Biol 98: 1194–1200.
- Mallamo JP, Diana GD, Pevear DC, Dutko FJ, Chapman MS, Kim KH, Minor I, Oliveira M, Rossmann MG. 1992. Conformationally restricted analogues of disoxaril: A comparison of the activity against human rhinovirus types 14 and 1A. J Med Chem 35: 4690–4695.
- Mason PW, Baxt B, Brown F, Harber J, Murdin A, Wimmer E. 1993. Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology 192: 568–577.
- Matthews TJ, Weinhold KJ, Lyerly HK, Langlois AJ, Wigzell H, Bolognesi DP. 1987. Interaction between the human T-cell lymphotropic virus type IIIB envelope glycoprotein gp120 and the surface antigen CD4: Role of carbohydrate in binding and cell fusion. Proc Natl Acad Sci USA 84: 5424–5428.
- McClelland A, deBear J, Yost SC, Meyer AM, Marlor CW, Greve JM. 1991. Identification of monoclonal antibody epitopes and critical residues for rhinovirus binding in domain 1 of ICAM-1. Proc Natl Acad Sci USA 88: 7993–7997.
- McKenna R, Ilag LL, Rossmann MG. 1994. Analysis of the single-stranded DNA bacteriophage øX174, refined at a resolution of 3.0 Å. J Mol Biol 237: 517–543.
- McKenna R, Xia D, Willingmann P, Ilag LL, Krishnaswamy S, Rossmann MG, Olson NH, Baker TS, Incardona NL. 1992a. Atomic structure of single-stranded DNA bacteriophage øX174 and its functional implications. Nature (Lond) 355: 137–143.
- McKenna R, Xia D, Willingmann P, Ilag LL, Rossmann MG. 1992b. Structure determination of the bacteriophage øX174. Acta Crystallogr B 48: 499–511.
- Mendelsohn CL, Wimmer E, Racaniello VR. 1989. Cellular receptors for poliovirus: Molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56: 855–865.
- Moore MD, Cooper NR, Tack BF, Nemerow GR. 1987. Molecular cloning of the cDNA encoding the Epstein-Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes. Proc Natl Acad Sci USA 84: 9194–9198.
- Mosser AG, Rueckert RR. 1993. WIN 51711-dependent mutants of poliovirus type 3: Evidence that virions decay after release from cells unless drug is present. J Virol 67: 1246–1254.
- Neubauer C, Frasel L, Kuechler E, Blaas D. 1987. Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology 158: 255–258.
- Oliveira MA, Zhao R, Lee WM, Kremer MJ, Minor I, Rueckert RR, Diana GD, Pevear DC, Dutko FJ, McKinlay MA, Rossmann MG. 1993. The structure of human rhinovirus 16. Structure 1: 51–68.
- Olson NH, Kolatkar PR, Oliveira MA, Cheng RH, Greve JM, McClelland A, Baker TS, Rossmann MG. 1993. Structure of a human rhinovirus complexed with its receptor molecule. Proc Natl Acad Sci USA 90: 507–511.
- Page GS, Mosser AG, Hogle JM, Filman DJ, Rueckert RR, Chow M. 1988. Three-dimensional structure of poliovirus serotype 1 neutralizing determinants. J Virol 62: 1781–1794.
- Palmenberg AC. 1989. Sequence alignments of picornaviral capsid proteins. In: BL Semler, E Ehrenfeld, eds. Molecular aspects of picornavirus infection and detection. Washington, D.C.: American Society for Microbiology. pp 211–241.
- Paul RW, Choi AHC, Lee PWK. 1989. The α-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology 172: 382–385.
- Pérez L, Carrasco L. 1993. Entry of poliovirus into cells does not require a low-pH step. J Virol 67: 4543–4548.
- Pevear DC, Fancher MJ, Felock PJ, Rossmann MG, Miller MS, Diana G, Treasurywala AM, McKinlay MA, Dutko FJ. 1989. Conformational change in the floor of the human rhinovirus canyon blocks adsorption to HeLa cell receptors. J Virol 63: 2002–2007.
- Racaniello VR. 1992. Interaction of poliovirus with its cell receptor. Semin Virol 3: 473–482.
- Rawn JD. 1989. Biochemistry. Burlington, North Carolina: Neil Patterson Publishers.
- Register RB, Uncapher CR, Naylor AM, Lineberger DW, Colonno RJ. 1991. Human-murine chimeras of ICAM-1 identify amino acid residues critical for rhinovirus and antibody binding. J Virol 65: 6589–6596.
- Roberts MM, White JL, Grütter MG, Burnett RM. 1986. Three-dimensional structure of the adenovirus major coat protein hexon. Science 232: 1148–1151.
- Robey E, Axel R. 1990. CD4: Collaborator in immune recognition and HIV infection. Cell 60: 697–700.
- Robinson IK, Harrison SC. 1982. Structureof the expanded state of tomato bushy stunt virus. Nature (Lond) 297: 563–568.
- Roivainen M, Hyypiä T, Piirainen L, Kalkkinen N, Stanway G, Hovi T. 1991. RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. J Virol 65: 4735–4740.
- Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG, Rueckert RR, Sherry B, Vriend G. 1985. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature (Lond) 317: 145–153.
- Rossmann MG, Palmenberg AC. 1988. Conservation of the putative receptor attachment site in picornaviruses. Virology 164: 373–382.
- Rueckert RR. 1990. Picornaviridae and their replication. In: BN Fields, DM Knipe, eds. Virology, ed, vol 1. New York: Raven Press. pp 507–548.
- Ryu SE, Kwong PD, Truneh A, Porter TG, Arthos J, Rosenberg M, Dai X, Xuong N, Axel R, Sweet RW, Hendrickson WA. 1990. Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature (Lond) 348: 419–425.
- Schultz M, Crowell RL. 1983. Eclipse of coxsackievirus infectivity: The restrictive event for a non-fusing myogenic cell line. J Gen Virol 64: 1725–1734.
- Sekiguchi K, Franke AJ, Baxt B. 1982. Competition for cellular receptor sites among selected aphthoviruses. Arch Virol 74: 53–64.
- Shepard DA, Heinz BA, Rueckert RR. 1993. WIN compounds inhibit both attachment and eclipse of human rhinovirus 14. J Virol 67: 2245–2254.
- Sherry B, Mosser AG, Colonno RJ, Rueckert RR. 1986. Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. J Virol 57: 246–257.
- Sherry B, Rueckert R. 1985. Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J Virol 53: 137–143.
- Simmons D, Makgoba MW, Seed B. 1988. ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature (Lond) 331: 624–627.
- Smith TJ, Kremer MJ, Luo M, Vriend G, Arnold E, Kamer G, Rossmann MG, McKinlay MA, Diana GD, Otto MJ. 1986. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233: 1286–1293.
-
Stauffacher CV,
Usha R,
Harrington M,
Schmidt T,
Hosur MV,
Johnson JE.
1987. The structure of cowpea mosaic virus at 3.5 Å resolution. In:
D Moras,
J Drenth,
G Strandberg,
D Suck,
K Wilson, eds.
Crystallography in molecular biology.
New York/London:
Plenum Press.
pp 293–308.
10.1007/978-1-4684-5272-3_25 Google Scholar
- Staunton DE, Dustin ML, Erickson HP, Springer TA. 1990. The arrangement of the immunoglobulin-like domains of the ICAM-1 and the binding site of LFA-1 and rhinovirus. Cell 61: 243–254.
- Staunton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA. 1988. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 52: 925–933.
- Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marling SD, Springer TA. 1989. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56: 849–853.
- Tanner J, Weis J, Fearon D, Whang Y, Kieff E. 1987. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 50: 203–213.
- Tomassini JE, Maxson TR, Colonno RJ. 1989. Biochemical characterization of a glycoprotein required for rhinovirus attachment. J Biol Chem 264: 1656–1662.
- Tsao J, Chapman MS, Agbandje M, Keller W, Smith K, Wu H, Luo M, Smith TJ, Rossmann MG, Compans RW, Parrish CR. 1991. The three-dimensional structure of canine parvovirus and its functional implications. Science 251: 1456–1464.
- Uncapher CR, DeWitt CM, Colonno RJ. 1991. The major and minor group receptor families contain all but one human rhinovirus serotype. Virology 180: 814–817.
- Wang H, Kavanaugh MP, North RA, Kabat D. 1991. Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature (Lond) 352: 729–731.
- Wang J, Yan Y, Garrett TPJ, Liu J, Rodgers DW, Garlick RL, Tarr GE, Hussain Y, Reinherz EL, Harrison SC. 1990. Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature (Lond) 348: 411–418.
- Weis W, Brown JH, Cusack S, Paulson JC, Skehel JJ, Wiley DC. 1988. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature (Lond) 333: 426–431.
- Williams RK, Jiang GS, Holmes KV. 1991. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci USA 88: 5533–5536.
- Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA. 1991. Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252: 1817–1822.
- Wilson IA, Skehel JJ, Wiley DC. 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature (Lond) 289: 366–373.
- Yafal AG, Kaplan G, Racaniello VR, Hogle JM. 1993. Characterization of poliovirus conformational alteration mediated by soluble cell receptors. Virology 197: 501–505.
- Yeates TO, Jacobson DH, Martin A, Wychowski C, Girard M, Filman DJ, Hogle JM. 1991. Three-dimensional structure of a mouse-adapted type 2/type 1 poliovirus chimera. EMBO J 10: 2331–2341.
- Zeichhardt H, Wetz K, Willingmann P, Habermehl KO. 1985. Entry of poliovirus type 1 and mouse Elberfeld (ME) virus into HEp-2 cells: Receptor-mediated endocytosis and endosomal or lysosomal uncoating. J Gen Virol 66: 483–492.