trans-Stilbene epoxidation by He+O2 atmospheric pressure plasma: Epoxidation without oxidant waste stream
Han Xu
Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, UK
State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
Search for more papers by this authorSui Wang
Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, UK
State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
Search for more papers by this authorMuhammad Shaban
Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, UK
Search for more papers by this authorFaraz Montazersadgh
Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, UK
Search for more papers by this authorAnas Alkayal
Department of Chemistry, Loughborough University, Loughborough, UK
Search for more papers by this authorDingxin Liu
State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
Search for more papers by this authorMichael G. Kong
State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
Search for more papers by this authorCorresponding Author
Benjamin R. Buckley
Department of Chemistry, Loughborough University, Loughborough, UK
Correspondence Benjamin R. Buckley, Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
Email: [email protected]
Felipe Iza, Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Felipe Iza
Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, UK
Correspondence Benjamin R. Buckley, Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
Email: [email protected]
Felipe Iza, Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
Email: [email protected]
Search for more papers by this authorHan Xu
Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, UK
State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
Search for more papers by this authorSui Wang
Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, UK
State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
Search for more papers by this authorMuhammad Shaban
Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, UK
Search for more papers by this authorFaraz Montazersadgh
Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, UK
Search for more papers by this authorAnas Alkayal
Department of Chemistry, Loughborough University, Loughborough, UK
Search for more papers by this authorDingxin Liu
State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
Search for more papers by this authorMichael G. Kong
State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
Search for more papers by this authorCorresponding Author
Benjamin R. Buckley
Department of Chemistry, Loughborough University, Loughborough, UK
Correspondence Benjamin R. Buckley, Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
Email: [email protected]
Felipe Iza, Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Felipe Iza
Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, UK
Correspondence Benjamin R. Buckley, Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
Email: [email protected]
Felipe Iza, Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
Email: [email protected]
Search for more papers by this authorAbstract
Plasmas interacting with organic liquids can lead to novel synthetic processes that are not feasible with conventional vacuum systems due to vapor pressure limitations. Of particular interest are processes that eliminate the generation of waste streams. Here, we show that He+O2 plasma can drive the epoxidation of alkenes in solution, in a process that generates epoxides without oxidant waste streams, runs at room temperature and atmospheric pressure, and requires no catalyst. The reactions between different reactive oxygen species generated in the plasma and the target alkene, trans-stilbene in this study, have been identified and optimization of the plasma conditions within the constraints of the current experimental setup has led to yields of ~70%, which are of preparative interest.
REFERENCES
- 1P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham et al., Plasma Sources Sci. Technol. 2016, 25, 053002.
- 2X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, K. Ostrikov, Phys. Rep. 2016, 630, 1.
- 3D. P. Park, K. Davis, S. Gilani, C. A. Alonzo, D. Dobrynin, G. Friedman, A. Fridman, A. Rabinovich, G. Fridman, Curr. Appl. Phys. 2013, 13, S19.
- 4A. Shaw, G. Shama, F. Iza, Biointerphases 2015, 10, 029402.
- 5S. Xu, S. Chansai, C. Stere, B. Inceesungvorn, A. Goguet, K. Wangkawong, S. F. R. Taylor, N. Al-Janabi, C. Hardacre, P. A. Martin, X. Fan, Nat. Catal. 2019, 2, 142.
- 6A. Tou, H. H. Kim, H. Einaga, Y. Teramoto, A. Ogata, Chem. Eng. J. 2019, 355, 380.
- 7Z. Jia, M. B. Amar, D. Yang, O. Brinza, A. Kanaev, X. Duten, A. Vega-González, Chem. Eng. J. 2018, 347, 913.
- 8D. Mariotti, R. M. Sankaran, J. Phys. D: Appl. Phys. 2010, 43, 323001.
- 9J. Foster, B. S. Sommers, S. N. Gucker, I. M. Blankson, G. Adamovsky, IEEE Trans. Plasma Sci. 2012, 40, 1311.
- 10C. Castelló Beltrán, E. A. Palmer, B. R. Buckley, F. Iza, Chem. Commun. 2015, 51, 1579.
- 11A. Wright, J. Fuster, A. Shaw, H. Bandulasena, B. R. Buckley, F. Iza, Plasma Chem. Plasma Process. 2018, 38, 1169.
- 12H. Suhr, Angew. Chem. Int. Edit. 1972, 11, 781.
- 13J. Benedikt, M. Mokhtar Hefny, A. Shaw, B. R. Buckley, F. Iza, S. Schäkermann, J. E. Bandow, Phys. Chem. Chem. Phys. 2018, 20, 12037.
- 14Y. Gorbanev, D. Leifert, A. Studer, D. O'Connell, V. Chechik, Chem. Commun. 2017, 53, 3685.
- 15S. P. Jiang, S. Duan, K. Q. Liu, X. Y. Yang, C. Cheng, J. Li, G. W. Wang, R. Soc. Open Sci. 2017, 4, 170658.
- 16R. Zhou, R. Zhou, K. Prasad, Z. Fang, R. Speight, K. Bazaka, K. Ostrikov, Green Chem. 2018, 20, 5276.
- 17R. A. Sheldon, Green Chem. 2017, 19, 18.
- 18L. Wood, Epoxidized Soybean Oil Market by Raw Material, Application, End-use Application—Global Forecast to 2026, Research and Markets (2017).
- 19Y. Lei, F. Mehmood, S. Lee, J. Greeley, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, R. J. Meyer, P. C. Redfern, D. Teschner, R. Schlogl, M. J. Pellin, L. A. Curtiss, S. Vajda, Science 2010, 328, 224.
- 20J. Rudolph, K. L. Reddy, J. P. Chiang, K. B. Sharpless, J. Am. Chem. Soc. 1997, 119, 6189.
- 21M. G. Clerici, P. Ingallina, Catal. Today 1998, 41, 351.
- 22Y. Suga, H. Sekiguchi, Thin Solid Films 2006, 506, 427.
- 23G. Gambus, P. Patiño, B. Mendez, A. Sifontes, J. Navea, P. Martín, P. Taylor, Energy Fuels 2001, 15, 881.
- 24P. Patiño, N. Sánchez, H. Suhr, N. Hernández, Plasma Chem. Plasma Process. 1999, 19, 241.
- 25J. Golda, J. Held, B. Redeker, M. Konkowski, P. Beijer, A. Sobota, G. Kroesen, N. S. J. Braithwaite, S. Reuter, M. M. Turner, J. Phys. D: Appl. Phys. 2016, 49, 84003.
- 26Y. Gorbanev, J. Golda, V. Gathen, A. Bogaerts, Plasma 2019, 2, 316.
- 27D. Ellerweg, J. Benedikt, A. von Keudell, N. Knake, V. Schulz-von der Gathen, New J. Phys. 2010, 12, 013021.
- 28J. S. Sousa, K. Niemi, L. J. Cox, Q. T. Algwari, T. Gans, D. O'Connell, J. Appl. Phys. 2011, 109, 123302.
- 29D. W. Liu, F. Iza, M. G. Kong, Plasma Process. Polym. 2009, 6, 446.
- 30K. McKay, D. X. Liu, M. Z. Rong, F. Iza, M. G. Kong, J. Phys. D: Appl. Phys 2012, 45, 172001.
- 31G. Smith, W. G. McGimpsey, M. C. Lynch, I. E. Kochevar, R. W. Redmond, Photochem. Photobiol. 1994, 59, 135.
- 32M. Matsumoto, S. Dobashi, K. Kondo, Tetrahedron Lett. 1977, 18, 2329.
10.1016/S0040-4039(01)83754-0 Google Scholar
- 33P. D. Bartlett, M. E. Landis, J. Am. Chem. Soc. 1977, 99, 3033.
- 34M. Matsumoto, S. Dobashi, K. Kondo, Bull. Chem. Soc. Jpn. 1978, 51, 185.
- 35B. M. Kwon, C. S. Foote, S. I. Khan, J. Org. Chem. 1989, 54, 3378.
- 36H. R. Li, L. Z. Wu, C. H. Tung, J. Am. Chem. Soc. 2000, 122, 2446.
- 37O. Horie, G. K. Moortgat, Gen. Top 1991, 25, 1881.
- 38H. Suhr, Plasma Chem. Plasma Process. 1989, 9, 7S.
- 39N. Knake, V. Schulz-von der Gathen, Eur. Phys. J. D 2010, 60, 645.
- 40N. Knake, S. Reuter, K. Niemi, V. Schulz-von der Gathen, J. Winter, J. Phys. D: Appl. Phys. 2008, 41, 194006.