Humidification effect of air plasma effluent gas on suppressing conidium germination of a plant pathogenic fungus in the liquid phase
Keisuke Shimada
Department of Electronic Engineering, Tohoku University, Sendai, Japan
Keisuke Shimada and Keisuke Takashima contributed equally to this work.
Search for more papers by this authorCorresponding Author
Keisuke Takashima
Department of Electronic Engineering, Tohoku University, Sendai, Japan
Keisuke Shimada and Keisuke Takashima contributed equally to this work.
Correspondence Keisuke Takashima, Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
Email: [email protected]
Search for more papers by this authorYutaka Kimura
Department of Electronic Engineering, Tohoku University, Sendai, Japan
Search for more papers by this authorKenji Nihei
Department of Electronic Engineering, Tohoku University, Sendai, Japan
Search for more papers by this authorHideaki Konishi
Department of Electronic Engineering, Tohoku University, Sendai, Japan
Search for more papers by this authorToshiro Kaneko
Department of Electronic Engineering, Tohoku University, Sendai, Japan
Search for more papers by this authorKeisuke Shimada
Department of Electronic Engineering, Tohoku University, Sendai, Japan
Keisuke Shimada and Keisuke Takashima contributed equally to this work.
Search for more papers by this authorCorresponding Author
Keisuke Takashima
Department of Electronic Engineering, Tohoku University, Sendai, Japan
Keisuke Shimada and Keisuke Takashima contributed equally to this work.
Correspondence Keisuke Takashima, Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
Email: [email protected]
Search for more papers by this authorYutaka Kimura
Department of Electronic Engineering, Tohoku University, Sendai, Japan
Search for more papers by this authorKenji Nihei
Department of Electronic Engineering, Tohoku University, Sendai, Japan
Search for more papers by this authorHideaki Konishi
Department of Electronic Engineering, Tohoku University, Sendai, Japan
Search for more papers by this authorToshiro Kaneko
Department of Electronic Engineering, Tohoku University, Sendai, Japan
Search for more papers by this authorAbstract
Increase of the water flow rate into atmospheric pressure air discharge plasma for humidification can significantly improve suppressing conidium germination of a plant pathogenic fungus in the liquid phase by its effluent gas exposure. The role of the introduced water includes enhancement of hydrogen supply to the plasma and cooling of the plasma effluent gas. The hydrogen-containing precursors for antibacterial species generation are experimentally increased. The gas cooling by the latent heat assists dinitrogen pentoxide density in the gas phase, a suggested precursor for antibacterial species generation near the liquid surface. This suggested near-surface reaction is a second-order reaction, generally requiring lower precursors concentrations and leading to less residues, thus it can be an important process for agricultural applications.
Supporting Information
Filename | Description |
---|---|
ppap201900004-sup-0001-SupMat.docx1.4 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, A. Brooks, Plasma Chem. Plasma Process. 2006, 26, 425.
- 2D. B. Graves, J. Phys. D: Appl. Phys. 2012, 45, 263001.
- 3D. P. Park, K. Davis, S. Gilani, C.-A. Alonzo, D. Dobrynin, G. Friedman, A. Fridman, A. Rabinovich, G. Fridman, Curr. Appl. Phys. 2013, 13, S19.
- 4A. Ochi, H. Konishi, S. Ando, K. Sato, K. Yokoyama, S. Tsushima, S. Yoshida, T. Morikawa, T. Kaneko, H. Takahashi, Plant Pathol. 2017, 66, 67.
- 5M. H. Kang, A. Pengkit, K. Choi, S. S. Jeon, H. W. Choi, D. B. Shin, E. H. Choi, H. S. Uhm, G. Park, PLoS One 2015, 10, e0139263.
- 6M. Ito, J. S. Oh, T. Ohta, M. Shiratani, M. Hori, Plasma Process. Polym. 2018, 15, 1700073.
- 7Y. R. G. Eloy, I. M. Vasconcelos, A. L. H. Barreto, F. R. Freire-Filho, J. T. A. Oliveira, Fungal Biol. 2015, 119, 747.
- 8W. A. Pryor, K. N. Houk, C. S. Foote, J. M. Fukuto, L. J. Ignarro, G. L. Squadrito, K. J. A. Davies, Am. J. Physiol.: Regul., Integr. Comp. Physiol. 2006, 291, R491.
- 9J. Shen, C. Cheng, S. Fang, H. Xie, Y. Lan, G. Ni, Y. Meng, J. Luo, X. Wang, Appl. Phys. Express 2012, 5, 036201.
- 10M. J. Pavlovich, H.-W. Chang, Y. Sakiyama, D. S. Clark, D. B. Graves, J. Phys. D: Appl. Phys. 2013, 46, 145202.
- 11H. Eto, Y. Ono, A. Ogino, M. Nagatsu, Appl. Phys. Lett. 2008, 93, 221502.
- 12P. Lukes, E. Dolezalova, I. Sisrova, M. Clupek, Plasma Sources Sci. Technol. 2014, 23, 015019.
- 13R. Laurita, D. Barbieri, M. Gherardi, V. Colombo, P. Lukes, Clinical Plasma Medicine 2015, 3, 53.
- 14W. Heaselgrave, P. W. Andrew, S. Kilvington, J. Antimicrob. Chemother. 2010, 65, 1207.
- 15M. Naitali, G. Kamgang-Youbi, J.-M. Herry, M.-N. Bellon-Fontaine, J.-L. Brisset, Appl. Environ. Microbiol. 2010, 76, 7662.
- 16S. Ikawa, K. Kitano, S. Hamaguchi, Plasma Process. Polym. 2010, 7, 33.
- 17H.-S. Kim, K. C. Wright, I.-H. Hwang, D.-H. Lee, A. Rabinovich, A. A. Fridman, Y. I. Cho, Plasma Medicine 2011, 1, 295.
10.1615/PlasmaMed.2013006439 Google Scholar
- 18D. Dobrynin, G. Friedman, A. Fridman, A. Starikovskiy, New J. Phys. 2011, 13, 103033.
- 19J. Shen, C. Cheng, Y. Zhao, D. Xiao, Y. Lan, H. Xie, J. Cheng, Y. Meng, J. Li, P. K. Chu, Jpn. J. Appl. Phys. 2014, 53, 110310.
- 20G. Kamgang-Youbi, J.-M. Herry, T. Meylheuc, J.-L. Brisset, M.-N. Bellon-Fontaine, A. Doubla, M. Naïtali, Lett. Appl. Microbiol. 2009, 48, 13.
- 21K. Matsui, N. Ikenaga, N. Sakudo, Jpn. J. Appl. Phys. 2015, 54, 06GD02.
- 22Y. Nakashima, S. Ikawa, A. Tani, K. Kitano, J. Chromatogr. A 2016, 1431, 89.
- 23S. Ikawa, A. Tani, Y. Nakashima, K. Kitano, J. Phys. D: Appl. Phys. 2016, 49, 425401.
- 24M. Golkowski, C. Golkowski, J. Leszczynski, S. R. Plimpton, P. Maslowski, A. Foltynowicz, J. Ye, B. Mccollister, IEEE Trans. Plasma Sci. 2012, 40, 1984.
- 25N. N. Misra, S. Patil, T. Moiseev, P. Bourke, J. P. Mosnier, K. M. Keener, P. J. Cullen, J. Food Eng. 2014, 125, 131.
- 26J. Winter, R. Brandenburg, K.-D. Weltmann, Plasma Sources Sci. Technol. 2015, 24, 064001.
- 27A. Schmidt-Bleker, J. Winter, S. Iseni, M. Dünnbier, K.-D. Weltmann, S. Reuter, J. Phys. D: Appl. Phys. 2014, 47, 145201.
- 28A. Schmidt-Bleker, J. Winter, A. Bösel, S. Reuter, K.-D. Weltmann, Plasma Sources Sci. Technol. 2016, 25, 015005.
- 29S. Reuter, J. Winter, A. Schmidt-Bleker, D. Schroeder, H. Lange, N. Knake, V. Schulz-von der Gathen, K. D. Weltmann, Plasma Sources Sci. Technol. 2012, 21, 024005.
- 30W. Tian, M. J. Kushner, J. Phys. D: Appl. Phys. 2015, 48, 494002.
- 31W. Tian, M. J. Kushner, J. Phys. D: Appl. Phys. 2014, 47, 165201.
- 32Y. Gorbanev, D. O'Connell, V. Chechik, Chem.—Eur. J. 2016, 22, 3496.
- 33T. Takamatsu, K. Uehara, Y. Sasaki, H. Miyahara, Y. Matsumura, A. Iwasawa, N. Ito, T. Azuma, M. Kohno, A. Okino, RSC Adv. 2014, 4, 39901.
- 34D. X. Liu, Z. C. Liu, C. Chen, A. J. Yang, D. Li, M. Z. Rong, H. L. Chen, M. G. Kong, Sci. Rep. 2016, 6, 23737.
- 35Y. Kimura, K. Takashima, S. Sasaki, T. Kaneko, J. Phys. D: Appl. Phys. 2019, 52, 064003.
- 36K. Takashima, T. Kaneko, Plasma Sources Sci. Technol. 2017, 26, 065018.
- 37U. Kogelschatz, Plasma Chem. Plasma Process. 2003, 23, 1.
- 38I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E. J. Zak, J. Quant. Spectrosc. Radiat. Transfer 2017, 203, 3.
- 39S. E. Hanbal, K. Takashima, S. Miyashita, S. Ando, K. Ito, M. M. Elsharkawy, T. Kaneko, H. Takahashi, Arch. Virol. 2018, 163, 2835.
- 40R. Dean, J. A. L. VanKan, Z. A. Pretorius, K. E. Hammond-Kosack, A. Di pietro, P. D. Spanu, J. J. Rudd, M. Dickman, R. Kahmann, J. Ellis, G. D. Foster, Mol. Plant Pathol 2012, 13, 414.
- 41J.-S. Oh, E. J. Szili, N. Gaur, S.-H. Hong, H. Furuta, H. Kurita, A. Mizuno, A. Hatta, R. D. Short, J. Phys. D: Appl. Phys. 2016, 49, 304005.
- 42E. J. Szili, J.-S. Oh, S.-H. Hong, A. Hatta, R. D. Short, J. Phys. D: Appl. Phys. 2015, 48, 202001.
- 43L. Sivachandiran, A. Khacef, RSC Adv. 2016, 6, 29983.
- 44T. H. Bertram, J. A. Thornton, Atmos. Chem. Phys. 2009, 9, 8351.
- 45J. G. Hoggett, R. B. Moodie, J. R. Penton, K. Schofield Nitration and Aromatic Activity, Cambridge University Press, UK 1971.
- 46E. Wiberg, N. Wiberg, A. F. Holleman, Inorganic Chemistry, Academic Press, Berlin 2001.
- 47S. Goldstein, J. Lind, G. Merényi, Chem. Rev. 2005, 105, 2457.