Stretch-Induced Melting and Recrystallization of Polyethylene-Plasticizer Film Studied by In Situ X-Ray Scattering: A Thermodynamic Point of View
Xiaowei Chen
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorWenwen Zhang
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorKe Ye
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Lingpu Meng
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Correspondence to: L. Meng: (E-mail: [email protected])Search for more papers by this authorFei Lv
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorTian Cao
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCaixia Wan
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorXin Chen
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorLiangbin Li
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorXiaowei Chen
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorWenwen Zhang
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorKe Ye
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Lingpu Meng
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Correspondence to: L. Meng: (E-mail: [email protected])Search for more papers by this authorFei Lv
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorTian Cao
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCaixia Wan
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorXin Chen
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorLiangbin Li
National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorABSTRACT
With in situ synchrotron radiation X-ray scattering, the structural alteration of polyethylene-plasticizer film during uniaxial stretching is studied at temperature far below melting point of crystal. By analyzing the evolution rule of structural parameters quantitatively, stretch-induced melting and recrystallization process is validated to be the underlying mechanism of plastic deformation for the system. The physical essence of stretch-induced melting is proved to be phase transition driven by elastic energy which originates from lattice deformation. Conversely, the recrystallization process is proved to be controlled by temperature; furthermore, the growth of lamellae during recrystallization is in perfect accordance with kinetic theory by Lauritzen and Hoffman. This study provides a quantitative understanding to the long-existing melting–recrystallization model from a thermodynamics point of view. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1521–1528
Supporting Information
Filename | Description |
---|---|
polb24740-sup-0001-AppendixS1.pdfPDF document, 463 KB | Appendix S1: Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1A. Pawlak, A. Galeski, Macromolecules 2005, 38, 9688.
- 2B. Xiong, O. Lame, J. M. Chenal, C. Rochas, R. Seguela, G. Vigier, Polymer 2013, 54, 5408.
- 3C. De Rosa, F. Auriemma, O. R. de Ballesteros, Phys. Rev. Lett. 2006, 96, 4.
- 4W. Wu, G. D. Wignall, L. Mandelkern, Polymer 1992, 33, 4137.
- 5H. Yang, J. Lei, L. Li, Q. Fu, Z. Li, Macromolecules 2012, 45, 6600.
- 6Y. Chen, B. Xu, H. Yang, Q. Zhang, Z. Li, Mater. Lett. 2018, 219, 209.
- 7H. J. Caelers, E. Parodi, D. Cavallo, G. W. Peters, L. E. Govaert, J. Polym. Sci.,Part B: Polym. Phys. 2017, 55, 729.
- 8H. J. Caelers, E. M. Troisi, L. E. Govaert, G. W. Peters, Polymer 2017, 9, 547.
- 9N. Brooks, R. Duckett, I. Ward, J. Polym.Sci., Part B: Polym. Phys. 1998, 36, 2177.
10.1002/(SICI)1099-0488(19980915)36:12<2177::AID-POLB15>3.0.CO;2-X CAS Web of Science® Google Scholar
- 10V. Gaucher-Miri, R. Séguéla, Macromolecules 1997, 30, 1158.
- 11R. Kurz, A. Achilles, W. Chen, M. Schäfer, A. Seidlitz, Y. Golitsyn, J. Kressler, W. Paul, G. Hempel, T. Miyoshi, T. Thurn-Albrecht, K. Saalwächter, Macromolecules 2017 50, 3890.
- 12X. Chen, F. Lv, F. Su, Y. Ji, L. Meng, C. Wan, Y. Lin, X. Li, L. Li, Polymer 2017, 118, 12.
- 13F. Lv, X. Chen, C. Wan, F. Su, Y. Ji, Y. Lin, X. Li, L. Li, Macromolecules 2017, 50, 6385.
- 14A. J. Pennings, J. Smook, J. Mater. Sci. 1984, 19, 3443.
- 15A. Galeski, A. Rozanski, Macromol. Symp. 2010, 298, 1.
- 16A. Rozanski, A. Galeski, Macromolecules 2015, 48, 5310.
- 17A. Rozanski, R. Idczak, Eur. Polym. J. 2015, 69, 186.
- 18X. Li, Y. Mao, H. Ma, F. Zuo, B. S. Hsiao, B. Chu, Polymer 2011, 52, 4610.
- 19H. Ma, X. Chen, B. S. Hsiao, B. Chu, Polymer 2014, 55, 160.
- 20V. I. Levitas, B. F. Henson, L. B. Smilowitz, B. W. Asay, Phys. Rev. Lett. 2004, 92, 235702.
- 21V. I. Levitas, Phys. Rev. Lett. 2005, 95, 075701.
- 22V. I. Levitas, B. F. Henson, L. B. Smilowitz, B. W. Asay, J. Phys. Chem. B 2006, 110, 10105.
- 23V. I. Levitas, N. Altukhova, Phys. Rev. B 2009, 79, 212101.
- 24V. I. Levitas, H. Chen, L. Xiong, Phys. Rev. B 2017, 96, 054118.
- 25A. Keller, Philos. Mag. 1957, 2, 1171.
- 26B. Wunderlich, Macromolecular Physics, Vol. 1: Crystal Structure, Morphology, Defects, Academic Press, New York, 1973.
- 27B. Xiong, O. Lame, J. Chenal, C. Rochas, R. Seguela, G. Vigier, Macromolecules 2015, 48, 2149.
- 28B. Xiong, O. Lame, J. Chenal, Y. Men, R. Seguela, G. Vigier, Polymer 2017, 118, 192.
- 29B. Xiong, O. Lame, J. Chenal, C. Rochas, R. Seguela, G. Vigier, Polymer 2014, 55, 1223.
- 30B. Xiong, O. Lame, J. Chenal, C. Rochas, R. Seguela, G. Vigier, Macromolecules 2015, 48, 5267.
- 31B. B. He, Two-Dimensional X-ray Diffraction, John Wiley & Sons: Hoboken, 2011.
- 32A. Galeski, Z. Bartczak, A. Argon, R. Cohen, Macromolecules 1992, 25, 5705.
- 33K. Kaji, T. Mochizuki, A. Akiyama, R. Hosemann, J. Mater. Sci. 1978, 13, 972.
- 34H. Song, A. Argon, R. E. Cohen, Macromolecules 1990, 23, 870.
- 35A. Peterlin, J. Mater. Sci. 1971, 6, 490.
- 36Y. Lu, R. Chen, J. Zhao, Z. Jiang, Y. Men, J. Phys. Chem. B 2017, 121, 6969.
- 37J. Zhao, Y. Sun, Y. Men, Macromolecules 2016, 49, 609.
- 38S. Humbert, O. Lame, J. M. Chenal, R. Seguela, G. Vigier, Eur. Polym. J. 2012, 48, 1093.
- 39M. L. Sentmanat, Rheol. Acta 2004, 43, 657.
- 40M. Sentmanat, B. N. Wang, G. H. McKinley, J. Rheol. 2005, 49, 585.
- 41Y. Liu, W. Zhou, K. Cui, N. Tian, X. Wang, L. Liu, L. Li, Y. Zhou. Rev. Sci. Instrum.2011, 82, 045104.
- 42J. Langford, J. Appl. Crystallogr. 1978, 11, 10.
- 43J. Langford, A. Wilson, J. Appl. Crystallogr. 1978, 11, 102.
- 44R. Hiss, S. Hobeika, C. Lynn, G. Strobl, Macromolecules 1999, 32, 4390.
- 45K. Hong, A. Rastogi, G. Strobl, Macromolecules 2004, 37, 10165.
- 46P. Zhu, X. Dong, D. Wang, Macromolecules 2017, 50, 3912.
- 47R. Young, P. Bowden, Philos. Mag. 1974, 29, 1061.
- 48A. Peterlin, Polym. Eng. Sci. 1977, 17, 183.
- 49A. Peterlin, Colloid Polym. Sci. 1975, 253, 809.
- 50A. Peterlin, Text. Res. J. 1972, 42, 20.
- 51A. Peterlin, F. J. Baltá-Calleja, J. Appl. Phys. 1969, 40, 4238.
- 52F. Balta-Calleja, A. Peterlin, J. Macromol. Sci., Part B: Phys. 1970, 4, 519.
- 53Z. Jiang, Y. Tang, J. Rieger, H.-F. Enderle, D. Lilge, S. V. Roth, R. Gehrke, W. Heckmann, Y. Men, Macromolecules 2010, 43, 4727.
- 54H. Kiho, A. Peterlin, P. H. Geil, J. Appl. Phys. 1964, 35, 1599.
- 55P. Allan, M. Bevis, Philos. Mag.A 1980, 41, 555.
- 56Y. Gelfer, H. Winter, Macromolecules 1999, 32, 8974.
- 57N. V. Pogodina, H. H. Winter, Macromolecules 1998, 31, 8164.
- 58J. Karger-Kocsis, Polym. Eng. Sci. 1996, 36, 203.
- 59A. Shojaei, G. Li, Int. J. Plast. 2013, 42, 31.
- 60G. R. Strobl, G. R. Strobl, The Physics of Polymers, Springer: Verlag Berlin Heidelberg, 1997.
10.1007/978-3-662-03488-0 Google Scholar
- 61F. Detrez, S. Cantournet, R. Seguela, Polymer 2011, 52, 1998.
- 62Y. Men, J. Rieger, G. Strobl, Phys. Rev. Lett. 2003, 91, 095502.
- 63J. Lauritzen, J. D. Hoffman, J. Res. Natl. Bur. Stand. A 1960, 64, 73.
- 64A. Gent, S. Madan, J. Polym. Sci., Part B: Polym.Phys. 1989, 27, 1529.
- 65J. D. Hoffman, R. L. Miller, Polymer 1997, 38, 3151.
- 66Z. Wang, J. Ju, J. Yang, Z. Ma, D. Liu, K. Cui, H. Yang, J. Chang, N. Huang, L. Li, Sci. Rep. 2016, 6, 32968.
- 67L. Mandelkern, Crystallization of Polymers, McGraw-Hill, New York, 1964.
10.1063/1.3051751 Google Scholar
- 68D. Sadler, P. Barham, Polymer 1990, 31, 36.
- 69D. Sadler, P. Barham, Polymer 1990, 31, 46.
- 70D. Sadler, P. Barham, Polymer 1990, 31, 43.