On the morphological behavior of ABC miktoarm stars containing poly(cis 1,4-isoprene), poly(styrene), and poly(2-vinylpyridine)
Corresponding Author
Sergey Chernyy
Technical University of Denmark, DTU Nanotech, Produktionstorvet, 2800 Lyngby, Denmark
Correspondence to: S. Chernyy (E-mail: [email protected]); J. P. Mahalik (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Jyoti P. Mahalik
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Correspondence to: S. Chernyy (E-mail: [email protected]); J. P. Mahalik (E-mail: [email protected])Search for more papers by this authorRajeev Kumar
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Search for more papers by this authorJacob Judas Kain Kirkensgaard
Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
Search for more papers by this authorMatthias M. L. Arras
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Search for more papers by this authorHyeyoung Kim
Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003
Search for more papers by this authorLars Schulte
Technical University of Denmark, DTU Nanotech, Produktionstorvet, 2800 Lyngby, Denmark
Search for more papers by this authorSokol Ndoni
Technical University of Denmark, DTU Nanotech, Produktionstorvet, 2800 Lyngby, Denmark
Search for more papers by this authorGregory S. Smith
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Search for more papers by this authorKell Mortensen
Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
Search for more papers by this authorBobby G. Sumpter
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Search for more papers by this authorThomas P. Russell
Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003
Search for more papers by this authorKristoffer Almdal
Technical University of Denmark, DTU Nanotech, Produktionstorvet, 2800 Lyngby, Denmark
Search for more papers by this authorCorresponding Author
Sergey Chernyy
Technical University of Denmark, DTU Nanotech, Produktionstorvet, 2800 Lyngby, Denmark
Correspondence to: S. Chernyy (E-mail: [email protected]); J. P. Mahalik (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Jyoti P. Mahalik
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Correspondence to: S. Chernyy (E-mail: [email protected]); J. P. Mahalik (E-mail: [email protected])Search for more papers by this authorRajeev Kumar
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Search for more papers by this authorJacob Judas Kain Kirkensgaard
Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
Search for more papers by this authorMatthias M. L. Arras
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Search for more papers by this authorHyeyoung Kim
Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003
Search for more papers by this authorLars Schulte
Technical University of Denmark, DTU Nanotech, Produktionstorvet, 2800 Lyngby, Denmark
Search for more papers by this authorSokol Ndoni
Technical University of Denmark, DTU Nanotech, Produktionstorvet, 2800 Lyngby, Denmark
Search for more papers by this authorGregory S. Smith
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Search for more papers by this authorKell Mortensen
Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
Search for more papers by this authorBobby G. Sumpter
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Search for more papers by this authorThomas P. Russell
Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003
Search for more papers by this authorKristoffer Almdal
Technical University of Denmark, DTU Nanotech, Produktionstorvet, 2800 Lyngby, Denmark
Search for more papers by this authorABSTRACT
Fundamental understanding of microphase separation in ABC miktoarm copolymers is vital to access a plethora of nonconventional morphologies. Miktoarm stars based on poly(cis 1,4-isoprene) (I), poly(styrene) (S), and poly(2-vinylpyridine) (V) are model systems, which allow systematic studies of the effects of composition, chemical microstructure, and temperature on the thermodynamics of microphase separation. Eleven ISV-x (I:S:V = 1:1:x, v:v:v) miktoarm copolymers were synthesized by anionic polymerization affording well-defined copolymers with a variable V arm. Equilibrium bulk morphologies of all samples, as evidenced by small-angle X-ray scattering, transmission electron microscopy (TEM), and self-consistent field theory, showed a systematic transition from lamellae (x ≈ 0–0.2) to [8.8.4] tiling (x ≈ 0.6–0.9) to cylinders in undulating lamellae (x ≈ 2–4) and, finally, to hexagonally packed core–shell cylinders (x ≈ 5–8). Chemical microstructure of the I arm [poly(cis 1,4-isoprene)] versus poly(3,4-isoprene) is shown to play important role in affecting morphological behavior. To reconcile differences between ISV-x star morphologies reported in the literature and those reported herein, even for the same composition, effects of the microstructure of I arm on the Flory–Huggins parameter between I and V arms were taken into account in a qualitative manner. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1491–1504
Supporting Information
Filename | Description |
---|---|
polb24733-sup-0001-AppendixS1.pdfPDF document, 3.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1J. J. K. Kirkensgaard, M. C. Pedersen, S. T. Hyde, Soft Matter 2014, 10(37), 7182.
- 2P. Tang, F. Qiu, H. Zhang, Y. Yang, J. Phys. Chem. B 2004, 108(24), 8434.
- 3G. Zhang, F. Qiu, H. Zhang, Y. Yang, A.-C. Shi, Macromolecules 2010, 43(6), 2981.
- 4Y. Matsushita, K. Hayashida, T. Dotera, A. Takano, J. Phys. Condens. Matter 2011, 23(28), 284111.
- 5S. Chernyy, J. J. K. Kirkensgaard, J. P. Mahalik, H. Kim, M. M. L. Arras, R. Kumar, B. G. Sumpter, G. S. Smith, K. Mortensen, T. P. Russell, K. Almdal, Macromolecules 2018, 55(3), 1041.
- 6M. Liu, W. Lia, F. Qiu, J. Chem. Phys. 2013, 138(10), 104904.
- 7H. Deng, W. Li, F. Qiu, A.-C. Shi, J. Phys. Chem. B 2017, 121(17), 4642.
- 8H. Hasegawa, Block Copolymers and Miktoarm Star-Branched Polymers. In Springer Japan, Anionic Polymerization, N. Hadjichristidis, A. Hirao Eds., 2015, p. 843.
10.1007/978-4-431-54186-8_18 Google Scholar
- 9Y. Matsushita, A. Takano, K. Hayashida, T. Asari, A. Noro, Polymer 2009, 50(10), 2191.
- 10J. J. K. Kirkensgaard, Interface Focus 2012, 2(5), 602.
- 11J. J. K. Kirkensgaard, M. E. Evans, L. de Campo, S. T. Hyde, Proc. Natl. Acad. Sci. U. S. A. 2014, 111(4), 1271.
- 12H. Iatrou, N. Hadjichristidis, Macromolecules 1992, 25(18), 4649.
- 13S. Sioula, Y. Tselikas, N. Hadjichristidis, Macromolecules 1997, 30(5), 1518.
- 14V. Bellas, H. Iatrou, N. Hadjichristidis, Macromolecules 2000, 33(19), 6993.
- 15N. Hadjichristidis, S. Pispas, G. Floudas, Nonlinear Block Copolymers. In Block Copolymers, New Jersey: John Wiley & Sons, 2003, p. 126.
- 16H. Hückstädt, V. Abetz, R. Stadler, Macromol. Rapid Commun. 1996, 17(8), 599.
- 17H. Hückstädt, A. Göpfert, V. Abetz, Macromol. Chem. Phys. 2000, 201(3), 296.
- 18K. Hayashida, A. Takano, S. Arai, Y. Shinohara, Y. Amemiya, Y. Matsushita, Macromolecules 2006, 39(26), 9402.
- 19A. Takano, S. Wada, S. Sato, T. Araki, K. Hirahara, T. Kazama, S. Kawahara, Y. Isono, A. Ohno, N. Tanaka, Y. Matsushita, Macromolecules 2004, 37(26), 9941.
- 20R. Quirk, T. Yoo, Polym. Bull. 1993, 31(1), 29.
- 21K. Hayashida, T. Dotera, A. Takano, Y. Matsushita, Phys. Rev. Lett. 2007, 98(19), 195502.
- 22K. Hayashida, N. Saito, S. Arai, A. Takano, N. Tanaka, Y. Matsushita, Macromolecules 2007, 40(10), 3695.
- 23K. Hayashida, W. Kawashima, A. Takano, Y. Shinohara, Y. Amemiya, Y. Nozue, Y. Matsushita, Macromolecules 2006, 39(14), 4869.
- 24Y. Matsushita, Macromolecules 2007, 40(4), 771.
- 25Y. Matsushita, K. Hayashida, A. Takano, Macromol. Rapid Commun. 2010, 31(18), 1579.
- 26K. Jiang, J. Zhang, Q. Liang, J. Phys. Chem. B 2015, 119(45), 14551.
- 27T. Gemma, A. Hatano, T. Dotera, Macromolecules 2002, 35(8), 3225.
- 28C.-I. Huang, H.-K. Fang, C.-H. Lin, Phys. Rev. E 2008, 77(3), 031804.
- 29J. J. K. Kirkensgaard, Phys. Rev. E 2012, 85(3), 031802.
- 30W. Xu, K. Jiang, P. Zhang, A.-C. Shi, J. Phys. Chem. B 2013, 117(17), 5296.
- 31A. Arora, J. Qin, D. C. Morse, K. T. Delaney, G. H. Fredrickson, F. S. Bates, K. D. Dorfman, Macromolecules 2016, 49(13), 4675.
- 32F. S. Bates, M. A. Hillmyer, T. P. Lodge, C. M. Bates, K. T. Delaney, G. H. Fredrickson, Science 2012, 336(6080), 434.
- 33W. Li, Y. Xu, G. Zhang, F. Qiu, Y. Yang, A.-C. Shi, J. Chem. Phys. 2010, 133(6), 064904.
- 34A. Nunns, C. A. Ross, I. Manners, Macromolecules 2013, 46(7), 2628.
- 35R. E. Cohen, D. Wilfong, Macromolecules 1982, 15(2), 370.
- 36S. Ndoni, C. M. Papadakis, F. S. Bates, K. Almdal, Rev. Sci. Instrum. 1995, 66(2), 1090.
- 37M. F. Schulz, A. K. Khandpur, F. S. Bates, K. Almdal, K. Mortensen, D. A. Hajduk, S. M. Gruner, Macromolecules 1996, 29(8), 2857.
- 38S. Chernyy, J. J. K. Kirkensgaard, A. Bakke, K. Mortensen, K. Almdal, Polymer 2017, 133, 129.
- 39S. Chernyy, Z. Wang, J. J. K. Kirkensgaard, A. Bakke, K. Mortensen, S. Ndoni, K. Almdal, J. Polym. Sci. Part A: Polym. Chem. 2017, 55(3), 495.
- 40G. M. Grason, R. D. Kamien, Phys. Rev. E 2005, 71(5), 051801.
- 41G. M. Grason, Phys. Rep. 2006, 433(1), 1.
- 42G. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers, Oxford University Press, New York, 2006; Vol. 134.
- 43G. Tzeremes, K. Ø. Rasmussen, T. Lookman, A. Saxena, Phys. Rev. E 2002, 65(4), 041806.
- 44S. W. Sides, G. H. Fredrickson, Polymer 2003, 44(19), 5859.
- 45https://www.txcorp.com
- 46R. Kumar, S. W. Sides, M. Goswami, B. G. Sumpter, K. Hong, X. Wu, T. P. Russell, S. P. Gido, K. Misichronis, S. Rangou, A. Avgeropoulos, T. Tsoukatos, N. Hadjichristidis, F. L. Beyer, J. W. Mays, Langmuir 2013, 29(6), 1995.
- 47K. Misichronis, J. Chen, A. Imel, R. Kumar, J. Thostenson, K. Hong, M. Dadmun, B. G. Sumpter, J. G. Kennemur, N. Hadjichristidis, J. W. Mays, A. Avgeropoulos, Macromolecules 2017, 50(6), 2354.
- 48M. W. Schulze, R. M. Lewis, J. H. Lettow, R. J. Hickey, T. M. Gillard, M. A. Hillmyer, F. S. Bates, Phys. Rev. Lett. 2017, 118(20), 207801.
- 49A. K. Khandpur, S. Foerster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortensen, Macromolecules 1995, 28(26), 8796.
- 50W. Zha, C. D. Han, D. H. Lee, S. H. Han, J. K. Kim, J. H. Kang, C. Park, Macromolecules 2007, 40(6), 2109.
- 51Y. Funaki, K. Kumano, T. Nakao, H. Jinnai, H. Yoshida, K. Kimishima, K. Tsutsumi, Y. Hirokawa, T. Hashimoto, Polymer 1999, 40(25), 7147.
- 52Frigo, M. In Proceedings of the 1999 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI '99), 1999; ACM: Atlanta, GA, USA, 1999; pp 169–180.
- 53R. Kumar, B. S. Lokitz, S. W. Sides, J. Chen, W. T. Heller, J. F. Ankner, J. F. Browning, S. M. Kilbey Ii, B. G. Sumpter, RSC Adv. 2015, 5(27), 21336.
- 54K. Yamauchi, K. Takahashi, H. Hasegawa, H. Iatrou, N. Hadjichristidis, T. Kaneko, Y. Nishikawa, H. Jinnai, T. Matsui, H. Nishioka, M. Shimizu, H. Furukawa, Macromolecules 2003, 36(19), 6962.
- 55D. Marsh, Chem. Phys. Lipids 2012, 165(1), 59.
- 56X. Yuci, L. Weihua, Q. Feng, Z. Hongdong, Y. Yuliang, S. An-Chang, J. Polym. Sci. B 2010, 48(10), 1101.
- 57N. Sakamoto, T. Hashimoto, Macromolecules 1995, 28(20), 6825.
- 58D. J. Worsfold, S. Bywater, Can. J. Chem. 1964, 42(12), 2884.
- 59F. S. Bates, J. H. Rosedale, H. E. Bair, T. P. Russell, Macromolecules 1989, 22(6), 2557.