Impact of surface charge density and motor force upon polyelectrolyte packaging in viral capsids
Corresponding Author
Qianqian Cao
College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing, 314001 People's Republic of China
Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia, 30602
Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
Correspondence to: Q. Cao (E-mail: [email protected])Search for more papers by this authorMichael Bachmann
Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia, 30602
Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, (MT), Brazil
Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, (MG), Brazil
Search for more papers by this authorCorresponding Author
Qianqian Cao
College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing, 314001 People's Republic of China
Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia, 30602
Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
Correspondence to: Q. Cao (E-mail: [email protected])Search for more papers by this authorMichael Bachmann
Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia, 30602
Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, (MT), Brazil
Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, (MG), Brazil
Search for more papers by this authorABSTRACT
By means of Langevin molecular dynamics simulations, we study the packaging dynamics of flexible and semiflexible polyelectrolytes in spherical cavities that resemble viral capsids. We employ a coarse-grained model of the polymer–capsid complex that allows us to perform simulations of a 900mer and investigate the influence of surface charges inside the capsid and an additional motor force, acting on the polymer in the portal region of the cavity, on the packaging process. Our results indicate that it is most efficient if surface charges are present that initially promote the formation of an ordered surface layer inside the capsid. Once these charges are screened, the motor force pulls in the remaining part of the chain. Additionally, the simulations also demonstrate that the packaging dynamics depends on the counterion valence. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1054–1065
REFERENCES AND NOTES
- 1J. Lidmar, L. Mirny, D. R. Nelson, Phys. Rev. E 2003, 68, 051910.
- 2M. E. Cerritelli, N. Q. Cheng, A. H. Rosenberg, C. E. McPherson, F. P. Booy, A. C. Steven, Cell 1997, 91, 271.
- 3W. Jiang, J. Chang, J. Jakana, P. Weigele, J. King, W. Chiu, Nature 2006, 439, 612.
- 4Y. Z. Tao, N. H. Olson, W. Xu, D. L. Anderson, M. G. Rossmann, T. S. Baker, Cell 1998, 95, 431.
- 5A. Fokine, P. R. Chipman, P. G. Leiman, V. V. Mesyanzhinov, V. B. Rao, M. G. Rossmann, Proc. Natl. Acad. Sci. USA 2004, 101, 6003.
- 6Q. Q. Cao, M. Bachmann, Phys. Rev. E 2014, 90, 060601(R).
- 7S. C. Harvey, A. S. Petrov, B. Devkota, M. B. Boz, Phys. Chem. Chem. Phys. 2009, 11, 10553.
- 8J. Rong, Z. Niu, L. A. Lee, Q. Wang, Curr. Opin. Colloid Interface Sci. 2011, 16, 441.
- 9T. Douglas, M. Young, Science 2006, 312, 873.
- 10C. Chen, M.-C. Daniel, Z. T. Quinkert, M. De, B. Stein, V. D. Bowman, P. R. Chipman, V. M. Rotello, C. C. Kao, B. Dragnea, Nano Lett. 2006, 6, 611.
- 11Y. J. Lee, H. Yi, W.-J. Kim, K. Kang, D. S. Yun, M. S. Strano, G. Ceder, A. M. Belcher, Science 2009, 324, 1051.
- 12Y.-L. Loo, R. A. Register, A. J. Ryan, Phys. Rev. Lett. 2000, 84, 4120.
- 13H. Arkin, W. Janke, J. Phys. Chem. B 2012, 116, 10379.
- 14H. Arkin, W. Janke, Phys. Rev. E 2012, 85, 051802.
- 15B. Hornblower, A. Coombs, R. D. Whitaker, A. Kolomeisky, S. J. Picone, A. Meller, M. Akeson, Nat. Methods 2007, 4, 315.
- 16G. F. Schneider, C. Dekker, Nat. Biotechnol. 2012, 30, 326.
- 17D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, C. Bustamante, Nature 2001, 413, 748.
- 18J. Kindt, S. Tzlil, A. Ben-Shaul, W. M. Gelbart, Proc. Natl. Acad. Sci. USA 2001, 98, 13671.
- 19I. Ali, D. Marenduzzo, J. M. Yeomans, Phys. Rev. Lett. 2006, 96, 208102.
- 20C. Forrey, M. Muthukumar, Biophys. J. 2006, 91, 25.
- 21A. S. Petrov, S. C. Harvey, Structure 2007, 15, 21.
- 22A. S. Petrov, M. B. Boz, S. C. Harvey, J. Struct. Biol. 2007, 160, 241.
- 23K. Zhang, K. Luo, J. Chem. Phys. 2012, 136, 185103.
- 24I. Ali, D. Marenduzzo, J. M. Yeomans, J. Chem. Phys. 2004, 121, 8635.
- 25A. S. Petrov, C. R. Locker, S. C. Harvey, Phys. Rev. E 2009, 80, 021914.
- 26I. Ali, D. Marenduzzo, J. Chem. Phys. 2011, 135, 095101.
- 27A. S. Petrov, S. C. Harvey, J. Struct. Biol. 2011, 174, 137.
- 28N. Stoop, J. Najafi, F. K. Wittel, M. Habibi, H. J. Herrmann, Phys. Rev. Lett. 2011, 106, 214102.
- 29D. G. Angelescu, R. Bruinsma, P. Linse, Phys. Rev. E 2006, 73, 041921.
- 30J. C. LaMarque, T.-V. L. Le, S. C. Harvey, Biopolymers 2004, 73, 348.
- 31C. Forrey, M. Muthukumar, J. Chem. Phys. 2009, 131, 105101.
- 32V. A. Belyi, M. Muthukumar, Proc. Natl. Acad. Sci. USA 2006, 103, 17174.
- 33C. L. Ting, J. Wu, Z.-G. Wang, Proc. Natl. Acad. Sci. USA 2011, 108, 16986.
- 34A. D. Migliori, N. Keller, T. I. Alam, M. Mahalingam, V. B. Rao, G. Arya, D. E. Smith, Nat. Commun. 2014, 5, 4173.
- 35J. D. Perlmutter, C. Qiao, M. F. Hagan, eLife 2013, 2, e00632.
- 36D. Marenduzzo, C. Micheletti, E. Orlandini, D. W. Sumners, Proc. Natl. Acad. Sci. USA 2013, 110, 20081.
- 37R. Matthews, A. A. Louis, J. M. Yeomans, Phys. Rev. Lett. 2009, 102, 088101.
- 38P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, K. Schulten, Structure 2006, 14, 437.
- 39Q. Q. Cao, M. Bachmann, Soft Matter 2013, 9, 5087.
- 40M. Bachmann, Thermodynamics and Statistical Mechanics of Macromolecular Systems; Cambridge University Press, Cambridge 2014.
10.1017/CBO9781139028516 Google Scholar
- 41Q. Q. Cao, C. C. Zuo, L. J. Li, Y. H. Ma, N. Li, Microfluid. Nanofluid. 2010, 9, 1051.
- 42K. Kremer, G. S. Grest, J. Chem. Phys. 1990, 92, 5057.
- 43R. W. Hockney, J. W. Eastwood, Computer Simulation Using Particles; Adam Hilger, Bristol, 1988.
- 44S. Plimpton, J. Comp. Phys. 1995, 117, 1.
- 45G. S. Grest, K. Kremer, Phys. Rev. A 1986, 33, 3628.
- 46O. V. Krasilnikov, C. G. Rodrigues, S. M. Bezrukov, Phys. Rev. Lett. 2006, 97, 018301.
- 47M. Tihova, K. Dryden, T. Le, S. Harvey, J. Johnson, M. Yeager, A. Schneemann, J. Virol. 2004, 7878, 2897.
- 48Q. Q. Cao, C. C. Zuo, H. W. He, L. J. Li, Macromol. Theory Simulat. 2009, 18, 441.
- 49D. N. Fuller, J. P. Rickgauer, P. J. Jardine, S. Grimes, D. L. Anderson, D. E. Smith, Proc. Natl. Acad. Sci. USA 2007, 104, 11245.
- 50I. Koltover, K. Wagner, C. R. Safinya, Proc. Natl. Acad. Sci. USA 2000, 97, 14046.