Structural transitions of nanocrystalline domains in regioregular poly(3-hexyl thiophene) thin films
Corresponding Author
Hoichang Yang
Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180
Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180Search for more papers by this authorTae Joo Shin
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
Search for more papers by this authorZhenan Bao
Department of Chemical Engineering, Stanford University, Stanford, California 94305
Search for more papers by this authorCorresponding Author
Chang Y. Ryu
Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180
Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180Search for more papers by this authorCorresponding Author
Hoichang Yang
Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180
Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180Search for more papers by this authorTae Joo Shin
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
Search for more papers by this authorZhenan Bao
Department of Chemical Engineering, Stanford University, Stanford, California 94305
Search for more papers by this authorCorresponding Author
Chang Y. Ryu
Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180
Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180Search for more papers by this authorAbstract
The effects of solution processing and thermal annealing on thin film morphology and crystalline structures of regioregular poly(3-hexyl thiophene) (RR P3HT) are studied in terms of molecular weight (Mw). Using grazing-incidence X-ray diffraction, π-conjugated planes in drop-cast films from chloroform solutions are found to be preferentially oriented parallel to the substrates regardless of Mw. However, the mesoscale nanocrystalline morphology of the drop-cast films is significantly affected by Mw, exhibiting a distinctive morphological transition from short nanorods to long nanofibrils above a critical number-averaged Mw (∼ 3.6 kDa). This is probably due to the change in a conformation change from an extended-chain to a folded-chain, as Mw of RR P3HT increases. In contrast, spin-casting of high Mw RR P3HT produces less ordered films with a lower crystallinity and mixed parallel/perpendicular orientations of π-conjugated planes. The crystallinity and parallel π-conjugated orientation of RR P3HT in spin-cast films could be improved by thermal treatments at high-temperatures either (1) above the glass transition temperature or (2) above the melting temperature of RR 3PHT followed by recrystallization upon cooling under vacuum. However, the charge mobility of the spin-cast films for a field-effect transistor application is still lower than that of the drop-cast films. This would be attributed to the chain oxidation and the development of distinct grain boundaries between RR P3HT nanofibrils during the thermal treatments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1303–1312, 2007
REFERENCES AND NOTES
- 1 Wang, J. Z.;Zheng, Z. H.;Li, H. W.;Huck, W. T. S.;Sirringshaus, H. Synth Met 2004, 146, 287.
- 2 Lee, T. W.;Kwon, O.;Kim, M. G.;Park, S. H.;Chung, J.;Kim, S. Y.;Chung, Y.;Park, J. Y.;Han, E.;Huh, D. H.;Park, J. J.;Pu, L. Appl Phys Lett 2005, 87.
- 3 Berggren, M.;Inganas, O.;Gustafsson, G.;Rasmusson, J.;Andersson, M. R.;Hjertberg, T.;Wennerstrom, O. Nature 1994, 372, 444.
- 4 Granstrom, M.;Berggren, M.;Inganas, O. Science 1995, 267, 1479.
- 5
Bjornholm, T.;Hassenkam, T.;Greve, D. R.;McCullough, R. D.;Jayaraman, M.;Savoy, S. M.;Jones, C. E.;McDevitt, J. T.
Adv Mater
1999,
11,
1218.
10.1002/(SICI)1521-4095(199910)11:14<1218::AID-ADMA1218>3.0.CO;2-G CAS Web of Science® Google Scholar
- 6 Bao, Z.;Lovinger, A. J.;Dodabalapur, A. Appl Phys Lett 1996, 69, 3066.
- 7 Ong, B. S.;Wu, Y. L.;Liu, P.;Gardner, S. J Am Chem Soc 2004, 126, 3378.
- 8 Sirringhaus, H.;Brown, P. J.;Friend, R. H.;Nielsen, M. M.;Bechgaard, K.;Langeveld-Voss, B. M. W.;Spiering, A. J. H.;Janssen, R. A. J.;Meijer, E. W.;Herwig, P.;de Leeuw, D. M. Nature 1999, 401, 685.
- 9 Sirringhaus, H.;Kawase, T.;Friend, R. H.;Shimoda, T.;Inbasekaran, M.;Wu;W.;Woo, E. P. Science 2000, 290, 2123.
- 10 Stokes, K. K.;Heuze, K.;McCullough, R. D. Macromolecules 2003, 36, 7114.
- 11 Iovu, M. C.;Jeffries-El, M.;Sheina, E. E.;Cooper, J. R.;McCullough, R. D. Polymer 2005, 46, 8582.
- 12 Zhang, Z. J.;Qiang, L. L.;Liu, B.;Xiao, X. Q.;Wei, W.;Peng, B.;Huang, W. Mater Lett 2006, 60, 679.
- 13 Kim, D. H.;Park, Y. D.;Jang, Y. S.;Yang, H. C.;Kim, Y. H.;Han, J. I.;Moon, D. G.;Park, S. J.;Chang, T. Y.;Chang, C. W.;Joo, M. K.;Ryu, C. Y.;Cho, K. W. Adv Funct Mater 2005, 15, 77.
- 14 Yang, H. C.;Shin, T. J.;Yang, L.;Cho, K.;Ryu, C. Y.;Bao, Z. N. Adv Func Mater 2005, 15, 671.
- 15 Chua, L. L.;Zaumseil, J.;Chang, J. F.;Ou, E. C. W.;Ho, P. K. H.;Sirringhaus, H.;Friend, R. H. Nature 2005, 434, 194.
- 16 Chang, J. F.;Sun, B. Q.;Breiby, D. W.;Nielsen, M. M.;Solling, T. I.;Giles, M.;McCulloch, I.;Sirringhaus, H. Chem Mater 2004, 16, 4772.
- 17 Kline, R. J.;McGehee, M. D.;Kadnikova, E. N.;Liu, J. S.;Frechet, J. M. J. Adv Mater 2003, 15, 1519.
- 18 Kline, R. J.;McGehee, M. D.;Kadnikova, E. N.;Liu, J. S.;Frechet, J. M. J.;Toney, M. F. Macromolecules 2005, 38, 3312.
- 19 Kim, D. H.;Park, Y. D.;Jang, Y.;Kim, S.;Cho, K. Macromol Rapid Commun 2005, 26, 834.
- 20 Merlo, J. A.;Frisbie, C. D. J Polym Sci Part B: Polym Phys 2003, 41, 2674.
- 21 Mcculloch, I.;Heeney, M.;Bailey, C.;Genevicius, K.;Macdonald, I.;Shkunov, M.;Sparrowe, D.;Tierney, S.;Wagner, R.;Zhang, W. M.;Chabinyc, M. L.;Kline, R. J.;Mcgehee, M. D.;Toney, M. F. Nature Mater 2006, 5, 328.
- 22 Loewe, R. S.;McCullough, R. D. Chem Mater 2000, 12, 3214.
- 23 Zhang, R.;Li, B.;Iovu, M. C.;Jeffries-EL, M.;Sauve, G.;Cooper, J.;Jia, S. J.;Tristram-Nagle, S.;Smilgies, D. M.;Lambeth, D. N.;McCullough, R. D.;Kowalewski, T. J Am Chem Soc 2006, 128, 3480.
- 24 Kiriy, N.;Jahne, E.;Adler, H. J.;Schneider, M.;Kiriy, A.;Gorodyska, G.;Minko, S.;Jehnichen, D.;Simon, P.;Fokin, A. A.;Stamm, M. Nano Lett 2003, 3, 707.
- 25 DeLongchamp, D. M.;Vogel, B. M.;Jung, Y.;Gurau, M. C.;Richter, C. A.;Kirillov, O. A.;Obrzut, J.;Fischer, D. A.;Sambasivan, S.;Richter, L. J.;Lin, E. K. Chem Mater 2005, 17, 5610.
- 26 Yang, C. D.;Scheiber, H.;List, E. J. W.;Jacob, J.;Mullen, K. Macromolecules 2006, 39, 5213.
- 27 Heffner, G. W.;Pearson, D. S. Macromolecules 1991, 24, 6295.
- 28 Yamamoto, T.;Komarudin, D.;Arai, M.;Lee, B. L.;Suganuma, H.;Asakawa, N.;Inoue, Y.;Kubota, K.;Sasaki, S.;Fukuda, T.;Matsuda, H. J Am Chem Soc 1998, 120, 2047.
- 29 Umemoto, S.;Kobayashi, N.;Okui, N. J Macromol Sci Phys B 2002, 41, 923.
- 30 Herman, T. U.;Kubono, A.;Umemoto, S.;Kikutani, T.;Okui, N. Polymer 1997, 38, 1677.
- 31 Umemoto, S.;Hayashi, R.;Kawano, R.;Kikutani, T.;Okui, N. J Macromol Sci Phys B 2003, B42, 421.
- 32 Magonov, S. N.;Yerina, N. A. Langmuir 2003, 19, 500.
- 33 Magonov, S. N.;Yerina, N. A.;Ungar, G.;Reneker, D. H.;Ivanov, D. A. Macromolecules 2003, 36, 5637.
- 34 Mena-Osteritz, E.;Meyer, A.;Langeveld-Voss, B. M. W.;Janssen, R. A. J.;Meijer, E. W.;Bauerle, P. Angew Chem Int Ed Engl 2000, 39, 2680.
- 35 Mo, Z.;Lee, K. B.;Moon, Y. B.;Kobayashi, M.;Heeger, A. J.;Wudl, F. Macromolecules 1985, 18, 1972.
- 36 Liu, J. S.;Loewe, R. S.;McCullough, R. D. Macromolecules 1999, 32, 5777.
- 37 Yang, H. C.;Shin, T. J.;Ling, M. M.;Cho, K.;Ryu, C. Y.;Bao, Z. N. J Am Chem Soc 2005, 127, 11542.
- 38 Samori, P.;Sikharulidze, I.;Francke, V.;Mullen, K.;Rabe, J. P. Nanotechnology 1999, 10, 77.
- 39 Wang, W.;Lieser, G.;Wegner, G. Macromol Chem Phys 1993, 194, 1289.
- 40 Degennes, P. G. J Chem Phys 1971, 55, 572.
- 41 Daoud, M.;Cotton, J. P.;Farnoux, B.;Jannink, G.;Sarma, G.;Benoit, H.;Duplessix, R.;Picot, C.;Gennes, P. G. D. Macromolecules 1975, 8, 804.
- 42 Colby, R. H.;Rubinstein, M.;Viovy, J. L. Macromolecules 1992, 25, 996.
- 43 Liu, J. S.;Sheina, E.;Kowalewski, T.;McCullough, R. D. Angew Chem Int Ed Engl 2001, 41, 329.
- 44 Roichman, Y.;Tessler, N. Appl Phys Lett 2002, 80, 1948.
- 45 Shimomura, T.;Sato, H.;Furusawa, H.;Kimura, Y.;Okumoto, H.;Ito, K.;Hayakawa, R.;Hotta, S. Phys Rev Lett 1994, 72, 2073.
- 46 Shimomura, T.;Kimura, Y.;Ito, K.;Hayakawa, R.;Hotta, S. Synth Meter 1995, 69, 689.
- 47 Cho, K.;Saheb, D. N.;Choi, J.;Yang, H. Polymer 2002, 43, 1407.
- 48 Shin, T. J.;Yang, H.;Ling, M. M.;Yang, L.;Lee, B.;Roberts, M.;Locklin, J.;Mallik, A. B.;Bao, Z, in preparation.
- 49 Yoneda, Y. Phys Rev 1963, 131, 2010.
- 50 Pynn, R. Phys Rev B 1992, 45, 602.
- 51 Merlo, J. A.;Frisbie, C. D. J Phys Chem B 2004, 108, 19169.
- 52 Aasmundtveit, K. E.;Samuelsen, E. J.;Guldstein, M.;Steinsland, C.;Flornes, O.;Fagermo, C.;Seeberg, T. M.;Pettersson, L. A. A.;Inganas, O.;Feidenhans'l, R.;Ferrer, S. Macromolecules 2000, 33, 3120.
- 53 Yamamoto, T.;Kokubo, H. J Polym Sci Part B: Polym Phys 2000, 38, 84.
- 54 Kim, D. H.;Han, J. T.;Park, Y. D.;Jang, Y.;Cho, J. H.;Hwang, M.;Cho, K. Adv Mater 2006, 18, 719.