Effect of LDPE on the thermomechanical properties of LLDPE-based films
M. Niaounakis
Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 5 Heroes of Polytechnio, GR-15773 Athens, Greece
Search for more papers by this authorCorresponding Author
E. Kontou
Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 5 Heroes of Polytechnio, GR-15773 Athens, Greece
Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 5 Heroes of Polytechnio, GR-15773 Athens, GreeceSearch for more papers by this authorM. Niaounakis
Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 5 Heroes of Polytechnio, GR-15773 Athens, Greece
Search for more papers by this authorCorresponding Author
E. Kontou
Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 5 Heroes of Polytechnio, GR-15773 Athens, Greece
Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 5 Heroes of Polytechnio, GR-15773 Athens, GreeceSearch for more papers by this authorAbstract
The present study compares the properties of five films: one film of low-density polyethylene (LDPE), two films of linear low density polyethylenes (1-octene comonomer)—one made by metalllocene catalyst (mLLDPE) and the other by Ziegler–Natta (zLLDPE)—and two blend films, one of mLLDPE/LDPE (film A) and the other of zLLDPE/LDPE (film B). The effect of LDPE (22% by weight) on the thermomechanical properties of LLDPE-based films is investigated by using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and stress-strain in the yield region measurements. The mechanical, dynamic, and thermal properties of film A are quite similar to a single component system (mLLDPE). The addition of this amount of LDPE does not affect the melting temperature of mLLDPE but it enhances its crystallinity. Film B is a rather inhomogeneous material, as opposed to film A, and its properties seem to be dependent on stretching conditions. Furthermore, the thermally activated rate process (Eyring's theory) is applied to analyze the yielding behavior of the two blend films. Double yielding manifested by film B is described with two thermally activated processes, while film A is satisfactorily described by a single process. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1712–1727, 2005
REFERENCES AND NOTES
- 1 Yilmazer, U. J Appl Polym Sci 1991, 42(9), 2379–2384.
- 2 Hakin, J. (Petrolite Corporation.) US Pat. 4,764,326, Aug 16, 1988.
- 3 Lu, J.;Sue, H.-J. J Polym Sci Part B: Polym Phys 2002, 40(6), 507–518.
- 4 Liu, C.;Wang, J.;He, J. Polymer 2002, 43(13), 3811–3818.
- 5 Speed, C. S. Plast Eng 1982, 38(7), 39–42.
- 6 Abraham, D.;George, K. E.;Francis, D. J. Eur Polym Mater 1990 26(2), 197–200.
- 7 Abraham, D.;George, K. E.;Francis D. J. J Appl Polym Sci 1996, 62(1), 59–65.
- 8 Utracki, L. A.;Schlund, B. Polym Eng Sci 1987, 27(20), 1512–1522.
- 9 Schlund, B.;Utracki, L. A. Polym Eng Sci 1987, 27(20), 1523–1529.
- 10 Balsamo, V.;Müller A. J. J Mater Sci Lett 1993, 12(18), 1457–1459.
- 11 Müller, A. J.;Balsamo, V.;Da Silva, F.;Rosales, C. M.;Saez, A. E. Polym Eng Sci 1994, 34(19), 1455–1463.
- 12 Micic, P.;Bhattacharya, S. N.;Field, G. Polym Eng Sci 1998, 38(10), 1685–1693.
- 13 Micic, P.;Bhattacharya, S. N. Polym Int 2000, 49(12), 1580–1589.
- 14 Ree, M.;Kyu, T.;Stein, R. S. J Polym Sci Part B: Polym Phys 1987, 25(1), 105–126.
- 15 Müller, A. J.;Balsamo, V.;Rosales, C. M. Polym Networks Blends 1992, 2(4), 215–223.
- 16 Liang, J. Z.;Ness, J. N. Polym Test 1997, 16(2), 173–184.
- 17 Datta, N. K.;Birley, A. W. Plast Rubber Compos Process Appl 1983, 3(3), 237–242.
- 18 Kyu, T.;Hu, S.-R.;Stein, R. S. J Polym Sci Part B: Polym Phys 1987, 25, 89–103.
- 19 Hill, M.;Puig, C. C. J Appl Polym Sci 1997, 65(10) 1921–1931.
- 20 Xu, J.;Xu, X.;Linsen, C.;Linxian, F.;Wei, C. Polymer 2001, 42(8), 3867–3874.
- 21
Lee, H.;Cho, K.;Ahn, T.-K.;Choe, S.;Kim, I. J.;Park, I.;Lee, B. H.
J Polym Sci Part B: Polym Phys
1997,
35(10),
1633–1642.
10.1002/(SICI)1099-0488(19970730)35:10<1633::AID-POLB15>3.0.CO;2-B CAS Web of Science® Google Scholar
- 22 Hussein, A. I.;Williams M. C. Polym Eng Sci 2001, 41(4), 696–701.
- 23 Cho, K.;Lee, B. H.;Hwang, K.-M.;Lee, H.;Choe S. Polym Eng Sci 1998, 38(12) 1969–1975.
- 24
Yamaguchi, M.;Abe, S.
J Appl Polym Sci
1999a,
74(13),
3153–3159.
10.1002/(SICI)1097-4628(19991220)74:13<3153::AID-APP18>3.0.CO;2-T CAS Web of Science® Google Scholar
- 25
Yamaguchi, M.;Abe, S.
J Appl Polym Sci
1999b,
74(13),
3160–3164.
10.1002/(SICI)1097-4628(19991220)74:13<3160::AID-APP19>3.0.CO;2-Q CAS Web of Science® Google Scholar
- 26 Hussein, A. I.;Williams, M. C. Polym Eng Sci 2004, 44(4), 660–672.
- 27 Beagan, C. M.;McNally, G. M.;Murphy, W. R. Annu Tech Conf ANTEC Proc Soc Plast Eng, Atlanta, 1998, 1, 128–133.
- 28 Beagan, C. M.;McNally, G. M.;Murphy, W. R. Dev Chem Eng Min Process 1999, 1(1), 201–218.
- 29 Xu, J.;Xu, X.;Zheng, Q.;Feng, L;Chen, W. Eur Polym Mater 2002, 38(2), 365–375.
- 30 Peón, J.;Domínguez, C.;Vega, J. F.;Aroca, M.;Martínez-Salazar, J. J Mater Sci 2003, 38(23), 4757–4764.
- 31 Hussein, A. I.;Hameed, T.;Abu Sharkh, B. F.;Mezghani K. Polymer 2003 44(16), 4665–4672.
- 32 Snyder, J. D. (E. I. Du Pont de Nemours and Company.) US Pat. 5,904,964, May 18, 1999.
- 33 Brady, J. M.;Thomas, E. L. J Polym Sci Part B: Polym Phys 1988, 26, 2385.
- 34 Prasad, A. Polym Eng Sci 1998, 8(10), 1716–1728.
- 35 Gaucher-Miri, V.;Elkoun, S.;Seguela, R. Polym Eng Sci 1997, 37(10), 1672–1683.
- 36 McCrum, N. G. In Molecular Basis of Transitions and Relaxations; D. J. Meir, Ed.; Gordon and Breach: New York, 1978; pp. 167–191.
- 37 Boyd, R. H. Polymer 1985, 26(8), 1123–1133.
- 38 Cerrada, M. L.;Benavente, R.;Peña, B.;Pérez, E. Polymer 2000, 41(15), 5957–5965.
- 39 Cerrada, M. L.;Benavente, R.;Pérez, E. J Mater Res 2001, 16(4), 1103–1111.
- 40 Starck, P.;Lofgren, B. Eur Polym Mater 2002, 38(1), 97–107.
- 41 Popli, R.;Madelkern, L. Polym Bull 1983, 9(6/7), 260–267.
- 42 Popli, R.;Madelkern, L.;Benson, R. S. J Polym Sci Part B: Polym Phys 1984, 22(3), 407–448.
- 43 Han, C. D.;Kim, J. J. J Polym Sci Part B: Polym Phys 1997, 25(8), 1741–1764.
- 44 Rana, D.;Kim, H. L.;Kwag, H.;Choe, S. Polymer 41(19), 7067–7082.
- 45 Seguela, R.;Darras, O. Mat Sci 1994, 29(20), 5342–5352.
- 46
Brooks, N. W. J.;Duckett, R. A.;Ward, I. M.
J Polym Sci Part B: Polym Phys
1998,
36(12),
2177–2189.
10.1002/(SICI)1099-0488(19980915)36:12<2177::AID-POLB15>3.0.CO;2-X CAS Web of Science® Google Scholar
- 47 Lucas, J. C.;Failla, M. D.;Smith, F. L.;Mandelkern, L.;Peacock, A. J. Polym Eng Sci 1995, 35(13), 1117–1123.
- 48 Truss, R. W.;Clarke, P. L.;Duckett, R. A.;Ward, I. M. J Polym Sci Part B: Polym Phys 1984, 22(2), 191–209.
- 49 Eyring, H. J Chem Phys 1936, 4, 283.
- 50 Glasstone, S.;Laidler, K. J.;Eyring H. In The Theory of Rate Processes; McGraw-Hill: New York, 1941; pp. 480–483.
- 51 Spathis, G.;Kontou, E. J Appl Polym Sci 2004, 91(6), 3519–3527.
- 52 Liu, Y.;Truss, R. W. J Polym Sci Part B: Polym Phys 1995, 33(5), 813–822.
- 53 Gupta, A. K.;Rana, S. K.;Deopura, B. L. J Appl Polym Sci 1993, 49(3), 477–485.
- 54 James, H. M.;Guth, E. J Polym Sci 1943, 11, 455.
- 55 Wolfram, S. In Mathematica: A System for Doing Mathematics by Computer, 2nd ed.; Wolfram Research Inc.: Reading, MA, 1993.
- 56 Matsuoka, S. In Relaxation Phenomena in Polymers; Hanser Publisher: Munich, 1992, p. 13.