Bifunctional 2-(alkoxycarbonothioylthio)acetic acids for the synthesis of TiO2-poly(vinyl acetate) nanocomposites via RAFT polymerization
Shude Xiao
Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9 Canada
Search for more papers by this authorWilliam Z. Xu
Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9 Canada
Search for more papers by this authorCorresponding Author
Paul A. Charpentier
Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9 Canada
Correspondence to: P. A. Charpentier (E-mail: [email protected])Search for more papers by this authorShude Xiao
Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9 Canada
Search for more papers by this authorWilliam Z. Xu
Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9 Canada
Search for more papers by this authorCorresponding Author
Paul A. Charpentier
Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9 Canada
Correspondence to: P. A. Charpentier (E-mail: [email protected])Search for more papers by this authorABSTRACT
Reversible addition-fragmentation chain-transfer (RAFT) polymerization has been known as a convenient method for the synthesis of polymers of designed molecular structures. Of particular interest are bifunctional or multifunctional chain-transfer agents (CTAs) which could be employed in the development of advanced materials via RAFT polymerization. In the present study, four bifunctional 2-(alkoxycarbonothioylthio) RAFT CTAs with COOH functionalities containing methoxy, ethoxy, isopropoxy, and octyloxy groups, respectively, were synthesized and characterized by FTIR and NMR spectroscopy. Polymerizations of vinyl acetate using these CTAs exhibited increased molecular weight with consumption of monomer and relatively narrow dispersities, indicative of living polymerization behavior. The effect of the concentration of 2-(ethoxycarbonothioylthio) acetic acid on the polymerization was examined, revealing that higher concentration of CTA led to lower molecular weight and narrower dispersity. As an example of the application of the synthesized bifunctional CTAs, TiO2-poly(vinyl acetate) (PVAc) nanocomposites were synthesized via a one-pot process and characterized by TGA, DSC, TEM, and affinity test, suggesting attachment of PVAc onto the nano-TiO2 particles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 606–618
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
pola27043-sup-0001-suppinfo01.doc552 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES AND NOTES
- 1 A. D. Jenkins, R. G. Jones, G. Moad, Pure Appl. Chem. 2010, 82, 483–491.
- 2
K. Matyjaszewski,
T. P. Davis, Handbook of Radical Polymerization; Wiley: New York, 2002.
10.1002/0471220450 Google Scholar
- 3 M. Jacquin, P. Muller, G. Lizarraga, C. Bauer, H. Cottet, O. Théodoly, Macromolecules 2007, 40, 2672–2682.
- 4 M. L. Coote, E. I. Izgorodina, G. E. Cavigliasso, M. Roth, M. Busch, C. Barner-Kowollik, Macromolecules 2006, 39, 4585–4591.
- 5 G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2005, 58, 379–410.
- 6 M. H. Stenzel, L. Cummins, G. E. Roberts, T. P. Davis, P. Vana, C. Barner-Kowollik, Macromol. Chem. Phys. 2003, 204, 1160–1168.
- 7 M. L. Coote, L. Radom, Macromolecules 2004, 37, 590–596.
- 8 M. L. Coote, D. J. Henry, Macromolecules 2005, 38, 5774–5779.
- 9 A. Favier, C. Barner-Kowollik, T. P. Davis, M. H. Stenzel, Macromol. Chem. Phys. 2004, 205, 925–936.
- 10 R. W. Simms, T. P. Davis, M. F. Cunningham, Macromol. Rapid Commun. 2005, 26, 592–596.
- 11 J. P. Russum, N. D. Barbre, C. W. Jones, F. J. Schork, J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 2188–2193.
- 12 A. Theis, T. P. Davis, M. H. Stenzel, C. Barner-Kowollik, Polymer 2006, 47, 999–1010.
- 13 J. Schmitt, N. Blanchard, J. Poly, Polym. Chem. 2011, 2, 2231–2238.
- 14 M. H. Stenzel, T. P. Davis, C. Barner-Kowollik, Chem. Commun. 2004, 1546–1547.
- 15 D. Boschmann, P. Vana, Polym. Bull. 2005, 53, 231–242.
- 16 D. Quemener, M. L. Hellaye, C. Bissett, T. P. Davis, C. Barner-Kowollik, M. H. Stenzel, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 155–173.
- 17 J. Bernard, A. Favier, T. P. Davis, C. Barner-Kowollik, M. H. Stenzel, Polymer 2006, 47, 1073–1080.
- 18 J. Bernard, M. Save, B. Arathoon, B. Charleux, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 2845–2857.
- 19 S. M. Khaled, R. Sui, P. A. Charpentier, A. S. Rizkalla, Langmuir 2007, 23, 3988–3995.
- 20 B. Hojjati, R. Sui, P. A. Charpentier, Polymer 2007, 48, 5850–5858.
- 21 P. A. Charpentier, W. Z. Xu, X. Li, Green Chem. 2007, 9, 768–776.
- 22 D. H. Nguyen, M. R. Wood, Y. Zhao, S. b. Perrier, P. Vana, Macromolecules 2008, 41, 7071–7078.
- 23 Y. Yang, Z. Yang, Q. Zhao, X. Cheng, S. C. Tjong, R. K. Y. Li, X. Wang, X. Xie, J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 467–484.
- 24 Q. Yang, L. Wang, W. Xiang, J. Zhou, Polymer 2007, 48, 3444–3451.
- 25 K. S. Finnie, J. R. Bartlett, J. L. Woolfrey, Langmuir 1998, 14, 2744–2749.
- 26 F. P. Rotzinger, J. M. Kesselman-Truttmann, S. J. Hug, V. Shklover, M. Graetzel, J. Phys. Chem. B 2004, 108, 5004–5017.
- 27 V. V. Ginzburg, Macromolecules 2005, 38, 2362–2367.
- 28 M. K. Corbierre, N. S. Cameron, M. Sutton, S. G. Mochrie, L. B. Lurio, A. Rühm, R. B. Lennox, J. Am. Chem. Soc. 2001, 123, 10411–10412.
- 29 M. K. Corbierre, N. S. Cameron, M. Sutton, K. Laaziri, R. B. Lennox, Langmuir 2005, 21, 6063–6072.
- 30 C. M. De Souza, C. R. Pacheco, M. I. Tavares, J. Appl. Polym. Sci. 1999, 73, 221–226.
- 31 C. M. De Souza, M. I. B. Tavares, J. Appl. Polym. Sci. 1999, 74, 2990–2996.
- 32 S.-i. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, H. Tokoro, Nat. Chem. 2010, 2, 539–545.
- 33 D. Macwan, P. N. Dave, S. Chaturvedi, J. Mater. Sci. 2011, 46, 3669–3686.
- 34 P. A. Charpentier, K. Burgess, L. Wang, R. Chowdhury, A. Lotus, G. Moula, Nanotechnology 2012, 23, 425606.
- 35 F. M. Christensen, H. J. Johnston, V. Stone, R. J. Aitken, S. Hankin, S. Peters, K. Aschberger, Nanotoxicology 2011, 5, 110–124.
- 36 D. -H. Wang, H. -S. Weng, Chem. Eng. Sci. 1988, 43, 2019–2024.
- 37 R. M. Silverstein, G. C. Bassler, T. C. Morrill, Spectrometric Identification of Organic Compounds, Wiley: New York, 1991.
- 38 S. Xiao, P. A. Charpentier, Acta Crystallogr. Sect. E: Struct. Rep. Online 2011, E67, o575.
- 39 S. Xiao, R. Gu, P. A. Charpentier, Acta Crystallogr. Sect. E: Struct. Rep. Online 2011, E67, o1442.
- 40 S. Xiao, P. A. Charpentier, Acta Crystallogr. Sect. E: Struct. Rep. Online 2010, E66, o3103.
- 41
D. Taton,
M. Destarac,
S. Z. Zard, In Handbook of RAFT Polymerization, ed. C. Barner-Kowollik, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2008, pp 373–421.
10.1002/9783527622757.ch10 Google Scholar
- 42 M. H. Allen, S. T. Hemp, A. E. Smith, T. E. Long, Macromolecules 2012, 45, 3669–3676.
- 43 G. Moad, E. Rizzardo, S. H. Thang, Polymer 2008, 49, 1079–1131.
- 44 G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2005, 58, 379.
- 45 S. D. Wanjale, J. P. Jog, J. Polym. Part Sci. B: Polym. Phys. 2003, 41, 1014–1021.
- 46 B. Hojjati, P. A. Charpentier, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 3926–3937.
- 47
J. E. Mark, The Polymer Data Handbook, Oxford University Press, 2009.
10.1093/oso/9780195181012.001.0001 Google Scholar
- 48 K. D. Dobson, A. J. McQuillan, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 1999, 55, 1395–1405.
- 49 P. D. Cozzoli, A. Kornowski, H. Weller, J. Am. Chem. Soc. 2003, 125, 14539–14548.