Effect of graphene doping of holographic polymer-dispersed liquid crystals
Corresponding Author
Byung Kyu Kim
Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Korea
Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, KoreaSearch for more papers by this authorMin Woo Jang
Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Korea
Search for more papers by this authorHong Chae Park
Department of Materials Science and Engineering, Pusan National University, Busan 609-735, Korea
Search for more papers by this authorHan Mo Jeong
Department of Chemistry, University of Ulsan, Ulsan 680-749, Korea
Search for more papers by this authorEun Young Kim
Institution of Industrial Science and Technology, Dukyong National University, Busan, 608-7317, Korea
Search for more papers by this authorCorresponding Author
Byung Kyu Kim
Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Korea
Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, KoreaSearch for more papers by this authorMin Woo Jang
Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Korea
Search for more papers by this authorHong Chae Park
Department of Materials Science and Engineering, Pusan National University, Busan 609-735, Korea
Search for more papers by this authorHan Mo Jeong
Department of Chemistry, University of Ulsan, Ulsan 680-749, Korea
Search for more papers by this authorEun Young Kim
Institution of Industrial Science and Technology, Dukyong National University, Busan, 608-7317, Korea
Search for more papers by this authorAbstract
Doping a polymer matrix with a minute amount of graphene (0.05–0.25%) had significant effects on the grating formation kinetics and electro-optical performance of a holographic polymer-dispersed liquid crystal. Low graphene contents (≤0.1%) reduced the viscosity and induced rapid diffusion, curing, grating formation, and high diffraction efficiency with a diffraction overshoot of 0.05%. Conversely, high graphene contents increased the compound viscosity, and the entire process proceeded slowly. Graphene increased the polymer conductivity and local electric field, reduced the operating voltage from 65 to 25–50 V, and increased the contrast ratio from 7 to 8–23 with a concomitant decrease in rise time. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012
REFERENCES AND NOTES
- 1 Qi, J.; Crawford, G. P. Display 2004, 25, 177–186.
- 2 Yamane, H.; Kikuchi, H.; Kajiyama, T. Polymer 1999, 40, 4777–4785.
- 3 Ryu, J. H.; Lee, S. G.; Nam, J. B.; Suh, K. D. Eur. Polym. J. 2007, 43, 2127–2134.
- 4 Fuh, A. Y. G.; Tsai, M. S.; Huang, L. J.; Liu, T. C. Appl. Phys. Lett. 1999, 74, 2572–2574.
- 5 Nalwa, H. S. Handbook of Advanced Electronic and Photonic Materials and Devices; Academic Press: San Diego, 2001.
- 6 Nicoletta, F. P.; Chidichimo, G.; Cupelli, D.; Filpo, G. D.; Benedittis, M. D.; Gabriele, B.; Salerno, G.; Fazio, A. Adv. Funct. Mater. 2005, 15, 995–999.
- 7 Zhang, J.; Yoshikado, S.; Aruga, T. Appl. Phys. Lett. 2003, 82, 25–27.
- 8 Liu, Y. J.; Sun, X. W.; Dai, H. T.; Liu, J. H.; Xu, K. S. Opt. Mater. 2005, 27, 1451–1455.
- 9 Natarajan, L. V.; Shepherd, C. K.; Brandelik, D.M.; Sutherland, R. L.; Chandra, S.; Tondiglia, V. P.; Tomlin, D. W.; Bunning, T. J. Chem. Mater. 2003, 15, 2477–2484.
- 10 Fredley, D. S.; Pennisi, R. W. U.S. Patent 5,847,787, 1998.
- 11 Cupelli, D.; Nicoletta, F. P.; Filpo, G. D.; Chidichimo, G.; Fazio, A.; Gabriele, B.; Salerno, G. Appl. Phys. Lett. 2004, 85, 3292–3294.
- 12 Woo, J. Y.; Kim, E. H.; Kim, B. K. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 5590–5596.
- 13 Sun. K. R.; Kim, B. K. Polym. Adv. Tech. DOI: 10.1002/pat.1708.
- 14 Kim, E. H.; Woo, J. Y.; Kim B. K. J. Appl. Polym. Sci. 2008, 109, 3108–3113.
- 15 Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197–200.
- 16 Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201–204.
- 17 Wu, B. G.; Erdmann, J. H.; Doane, W. Liq. Cryst. 1989, 5, 1453–1465.
- 18 Jung, D. H.; Jeong, H. M.; Kim, B. K. J. Mater. Chem. 2010, 20, 3458–3466.
- 19 Bae, C. Y.; Park, J. H.; Kim, E. Y.; Kang, Y. S.; Kim, B. K. J. Mater. Chem. 2011, 21, 11288–11295.
- 20 Jang, M. K.; Hartwig, A.; Kim, B. K. J. Mater. Chem. 2009, 19, 1166–1172.
- 21 Zhou, G.; Willett, J. L.; Carriere, C. J. Polym. Eng. Sci. 2001, 41, 1365–1372.
- 22 Asif, A.; Shi, W.; Shen, X.; Nie, K. Polymer 2005, 46, 11066–11078.
- 23 Yates, C. R.; Hayes, W. Eur. Polym. J. 2004, 40, 1257–1281.
- 24 Chun, C. M.; Ghim, J. E.; Kim, M. J.; Kim, D. Y. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 3525–3532.
- 25 Hoyle, C. E.; Lee, T. Y.; Roper, T. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 5301–5338.
- 26 Gill, N.; Pojman, J. A.; Willis, J.; Whitehead, J. B. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 204–212.
- 27 Qi, J.; Sarkar, M. D.; Warren, G. T.; Crawford, G. P. J. Appl. Phys. 2002, 91, 4795–4800.
- 28 Doane, W. J. Liquid Crystals—Application and Uses, Vol. 1; World Scientific: Jersey, 1990.
- 29 Jeong, H.-K.; Lee, Y. R.; Lahaye, R. J. W. E.; Park, M.-H.; An, K. H.; Kim, I. J.; Yang, C.-W.; Park, C. Y.; Rusoff, R. S.; Lee, Y. H. J. Am. Chem. Soc. 2008, 130, 1362–1366.
- 30 Schniepp, H. C.; Li, J.-L.; McAllister, M. J.; Sai, M.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535–8539.
- 31 Kim, E. H.; Woo, J. Y.; Kim, B. K. Macromol. Rapid Commun. 2006, 27, 553–557.