Polymer–silicate nanocomposites produced by in situ atom transfer radical polymerization
Hanying Zhao
Department of Chemistry and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810
Search for more papers by this authorS. Dayana Argoti
Department of Chemistry and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810
Search for more papers by this authorBrendan P. Farrell
Department of Chemistry and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810
Search for more papers by this authorCorresponding Author
Devon A. Shipp
Department of Chemistry and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810
Department of Chemistry and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810Search for more papers by this authorHanying Zhao
Department of Chemistry and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810
Search for more papers by this authorS. Dayana Argoti
Department of Chemistry and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810
Search for more papers by this authorBrendan P. Farrell
Department of Chemistry and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810
Search for more papers by this authorCorresponding Author
Devon A. Shipp
Department of Chemistry and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810
Department of Chemistry and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810Search for more papers by this authorAbstract
Polymer–silicate nanocomposites were synthesized with atom transfer radical polymerization (ATRP). An ATRP initiator, consisting of a quaternary ammonium salt moiety and a 2-bromo-2-methyl propionate moiety, was intercalated into the interlayer spacings of the layered silicate. Subsequent ATRP of styrene, methyl methacrylate, or n-butyl acrylate with Cu(I)X/N,N-bis(2-pyridiylmethyl) octadecylamine, Cu(I)X/N,N,N′,N′,N″-pentamethyldiethylenetriamine, or Cu(I)X/1,1,4,7,10,10-hexamethyltriethylenetetramine (X = Br or Cl) catalysts with the initiator-modified silicate afforded homopolymers with predictable molecular weights and low polydispersities, both characteristics of living radical polymerization. The polystyrene nanocomposites contained both intercalated and exfoliated silicate structures, whereas the poly(methyl methacrylate) nanocomposites were significantly exfoliated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 916–924, 2004
REFERENCES AND NOTES
- 1 Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O. J Mater Res 1993, 8, 1174.
- 2 Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J Mater Res 1993, 8, 1179.
- 3 Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J Mater Res 1993, 8, 1185.
- 4 Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Karauchi, T.; Kamigaito, O. J Polym Sci Part A: Polym Chem 1993, 31, 983.
- 5 Yasue, K.; Katahira, S.; Yoshikawa, M.; Fujimoto, K. In Polymer–Clay Nanocomposites; T. J. Pinnavaia; G. W. Beall, Eds.; Wiley: New York, 2000; p 111.
- 6 Wang, Z.; Massam, J.; Pinnavaia, T. J. In Polymer–Clay Nanocomposites; T. J. Pinnavaia; G. W. Beall, Eds.; Wiley: New York, 2000; p 127.
- 7 Zhu, J.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A. Chem Mater 2001, 13, 3774.
- 8 Vaia, R. A.; Liu, W. J Polym Sci Part B: Polym Phys 2002, 40, 1590.
- 9 Huang, X.; Lewis, S.; Brittain, W. J.; Vaia, R. A. Macromolecules 2000, 33, 2000.
- 10 Giannelis, E. P.; Krishnamoorti, R.; Manias, E. Adv Polym Sci 1999, 138, 107.
- 11 Zhao, B.; Brittain, W. J. Prog Polym Sci 2000, 25, 677.
- 12 Blomberg, S.; Ostberg, S.; Harth, E.; Bosman, A. W.; Van Horn, B.; Hawker, C. J. J Polym Sci Part A: Polym Chem 2002, 40, 1309.
- 13 Wang, W.-P.; Pan, C.-Y. J Polym Sci Part A: Polym Chem 2003, 41, 2715.
- 14 Kim, J.-B.; Huang, W.; Miller, M. D.; Baker, G. L.; Bruening, M. L. J Polym Sci Part A: Polym Chem 2003, 41, 386.
- 15 Barner, L.; Zwaneveld, N.; Perera, S.; Pham, Y.; Davis, T. P. J Polym Sci Part A: Polym Chem 2002, 40, 4180.
- 16 Luo, N.; Hutchinson, J. B.; Anseth, K. S.; Bowman, C. N. J Polym Sci Part A: Polym Chem 2002, 40, 1885.
- 17 Yamamoto, K.; Miwa, Y.; Tanak, H.; Sakaguchi, M.; Shimada, S. J Polym Sci Part A: Polym Chem 2002, 40, 3350.
- 18 Jones, D. M.; Smith, J. R.; Huck, W. T. S.; Alexander, C. Adv Mater 2000, 14, 1130.
- 19 Lemieux, M.; Usov, D.; Minko, S.; Stamm, M.; Shulha, H.; Tsukruk, V. V. Macromolecules 2003, 36, 7244.
- 20 Dyer, D. J. Adv Funct Mater 2003, 13, 667.
- 21 Lemieux, M.; Minko, S.; Usov, D.; Stamm, M.; Tsukruk, V. V. Langmuir 2003, 19, 6126.
- 22 Julthongpiput, D.; LeMieux, M.; Tsukruk, V. V. Polymer 2003, 44, 4557.
- 23 Khan, M.; Huck, W. T. S. Macromolecules 2003, 36, 5088.
- 24 Advincula, R. C. J Dispersion Sci Technol 2003, 24, 343.
- 25 Minko, S.; Muller, M.; Motornov, M.; Nitschke, M.; Grundke, K.; Stamm, M. J Am Chem Soc 2003, 125, 3896.
- 26 Fan, X. W.; Xia, C. J.; Fulghum, T.; Park, M. K.; Locklin, J.; Advincula, R. C. Langmuir 2003, 19, 916.
- 27 Ishizu, K.; Tsubaki, K.; Mori, A.; Uchida, S. Prog Polym Sci 2003, 28, 27.
- 28 Jones, D. M.; Brown, A. A.; Huck, W. T. S. Langmuir 2002, 18, 1265.
- 29
Huang, W. X.;
Baker, G. L.;
Bruening, M. L.
Angew Chem Int Ed
2001,
40,
1510.
10.1002/1521-3773(20010417)40:8<1510::AID-ANIE1510>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- 30 Wang, D. Y.; Zhu, J.; Yao, Q.; Wilkie, C. A. Chem Mater 2002, 14, 3837.
- 31 Pinnavaia, T. J. Science 1983, 220, 365.
- 32 Alexandre, M.; Dubois, P. Mater Sci Eng R 2000, 28, 1.
- 33 Carrado, K. A.; Xu, L. Chem Mater 1998, 10, 1440.
- 34 Giannelis, E. P. Adv Mater 1996, 8, 29.
- 35 Messersmith, P. B.; Giannelis, E. P. J Polym Sci Part A: Polym Chem 1995, 33, 1047.
- 36 Zanetti, M.; Lomakin, S.; Camino, G. Macromol Mater Eng 2000, 279, 1.
- 37 Rossi, G. B.; Beaucage, G.; Dang, T. D.; Vaia, R. A. Nano Lett 2002, 2, 319.
- 38 Huang, X.; Brittain, W. J. Macromolecules 2001, 34, 3255.
- 39 Weimer, M. W.; Chen, H.; Giannelis, E. P.; Sogah, D. Y. J Am Chem Soc 1999, 121, 1615.
- 40 Böttcher, H.; Hallensleben, M. L.; Nuss, S.; Wurm, H.; Bauer, J.; Behrens, P. J Mater Chem 2002, 12, 1351.
- 41 Su, S.; Wilkie, C. A. J Polym Sci Part A: Polym Chem 2003, 41, 1124.
- 42 Tong, X.; Zhao, H.; Tang, T.; Feng, Z.; Huang, B. J Polym Sci Part A: Polym Chem 2002, 40, 1706.
- 43 Zhu, J.; Start, P.; Mauritz, K. A.; Wilkie, C. A. J Polym Sci Part A: Polym Chem 2002, 40, 1498.
- 44 Matyjaszewski, K.; Xia, J. Chem Rev 2001, 101, 2921.
- 45 Zhou, Q.; Fan, X.; Xia, C.; Mays, J.; Advincula, R. Chem Mater 2001, 13, 2465.
- 46 Argoti, S. D.; Reeder, S.; Zhao, H.; Shipp, D. A. Polym Prepr 2002, 43(2), 267.
- 47 Zhao, H.; Shipp, D. A. Chem Mater 2003, 15, 2693.
- 48 Shipp, D. A.; Zhao, H.; Farrell, B. P. Polym Prepr 2003, 44(2), 249.
- 49 Xia, J.; Matyjaszewski, K. Macromolecules 1999, 32, 2434.
- 50 Xue, L.; Agarwal, U. S.; Lemstra, P. J. Macromolecules 2002, 35, 8560.
- 51 Hellberg, P. E.; Bergstrom, K.; Holmberg, K. J Surf Deterg 2000, 3, 81.
- 52 Akelah, A.; Moet, A. J Mater Sci 1996, 31, 3589.
- 53 Biasci, L.; Agliettoa, M.; Ruggeria, G.; Ciardellia, F. Polymer 1994, 35, 3296.
- 54 Chen, G.; Chen, X.; Lin, Z.; Ye, W.; Yao, K. J Mater Sci Lett 1999, 18, 1761.
- 55 Okamoto, M.; Morita, S.; Taguchi, H.; Kim, Y. H.; Kotaka, T.; Tateyama, H. Polymer 2000, 41, 3887.
- 56 Eastman, M. P.; Porter, T. L. In Polymer–Clay Nanocomposites; T. J. Pinnavaia; G. W. Beall, Eds.; Wiley: New York, 2000; p 65.
- 57 Solomon, D. H.; Swift, J. D. J Appl Polym Sci 1967, 11, 2567.