Cation sitting in aromatic cages: ab initio computational studies on tetramethylammonium–(benzene)n (n=3–4) complexes
Jiagao Cheng
School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Search for more papers by this authorZhen Gong
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
Search for more papers by this authorCorresponding Author
Weiliang Zhu
School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.===Search for more papers by this authorYun Tang
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Search for more papers by this authorWeihua Li
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Search for more papers by this authorZhong Li
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Search for more papers by this authorCorresponding Author
Hualiang Jiang
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.===Search for more papers by this authorJiagao Cheng
School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Search for more papers by this authorZhen Gong
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
Search for more papers by this authorCorresponding Author
Weiliang Zhu
School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.===Search for more papers by this authorYun Tang
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Search for more papers by this authorWeihua Li
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Search for more papers by this authorZhong Li
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Search for more papers by this authorCorresponding Author
Hualiang Jiang
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.===Search for more papers by this authorAbstract
Quantum chemistry study was performed on interaction between tetramethylammonium (TMA) and aromatic cages by means of the MP2 method to show how TMA sits in an aromatic cage that is composed of benzenes. The MP2 calculations on TMA–(benzene)n complexes demonstrate that the more the benzene molecules in the aromatic cage, the stronger the binding strength between the cage and TMA. In details, the structure of TMA–(benzene)n (n = 1–4) complexes can be easily constructed by superimposing n TMA-benzene complexes via TMA, and the binding energies of the TMA–(benzene)n complexes are the sum of the n corresponding TMA-benzene systems. For instance, the distances between the N of TMA and the plane of the benzene ring are 4.238, 4.252, 4.264 ,and 4.276 Å, respectively, for TMA–(benzene)n (n = 1–4) complexes, and the BSSE corrected binding energies at MP2/6-311++G** level are −8.8, −17.3, −25.8 and −34.3 kcal/mol, respectively, for TMA– (benzene)n (n = 1–4) complexes. Thus, this study provides us useful information on how a cation interacts with an aromatic cage in terms of complex geometry and binding strength. Copyright © 2007 John Wiley & Sons, Ltd.
REFERENCES
- 1 Dougherty DA. Science 1996; 271: 163–168.
- 2 Ma JC, Dougherty DA. Chem. Rev. 1997; 97: 1303–1324.
- 3 Zacharias N, Dougherty DA. Trends. Pharmcol. Sci. 2002; 23: 281–287.
- 4 Scrutton NS, Raine ARC. Biochem. J. 1996; 319: 1–8.
- 5 Schmitt JD, Sharples CGV, Caldwell WS. J. Med. Chem. 1999; 42: 3066–3074.
- 6 Brejc K, Dijk WJV, Klaassen RV, Schuurmans M, Oost JVD, Smit AB, Sixma TK. Nature 2001; 411: 269–276.
- 7 Zarić S, Popović DM, Knapp EW. Chem. Eur. J. 2000; 6: 3935–3942.
10.1002/1521-3765(20001103)6:21<3935::AID-CHEM3935>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 8 Gallivan JP, Dougherty DA. J. Am. Chem. Soc. 2000; 122: 874–880.
- 9 Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. Science 1991; 253: 872–879.
- 10 Harel M, Schalk I, Ehret-Sabatier L, Bouet F, Goeldner M, Hirth C, Axelsen PH, Silman I, Sussman JL. Proc. Natl. Acad. Sci. USA 1993; 90: 9031–9035.
- 11 Schiefner A, Breed J, Bosser L, Kneip S, Gade J, Holtmann G, Diederichs K, Welte W, Bremer E. J. Bio. Chem. 2004; 279: 5588–5596.
- 12 Fernández-Tornero C, López R, García E, Giménez-Gallego G, Romero A. Nature Struct. Biol. 2001; 8: 1020–1024.
- 13 Aleshin AE, Firsov LM, Honzatko RB. J. Bio. Chem. 1994; 269: 15631–15639.
- 14 Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen LS, Chait BT, MacKinnon R. Science 1998; 280: 69–77.
- 15 MacKinnon R, Cohen LS, Kuo A, Lee A, Chait BT. Science 1998; 280: 106–109.
- 16 Nakamura RL, Anderson JA, Gaber RF. J. Bio. Chem. 1997; 272: 1011–1018.
- 17 Cooper EC, Jan LY. Proc. Natl. Acad. Sci. USA 1999; 96: 4759–4766.
- 18 Luzhkow VB, Åqvist J. FEBS Lett. 2001; 495: 191–196.
- 19 Roux B, MacKinnon R. Science 1999; 285: 100–102.
- 20 Jarolimek W, Soman KV, Alam M, Brown AM. Mol. Pharmacol. 1996; 49: 165–171.
- 21 Liu T, Zhu W, Gu J, Shen J, Luo X, Chen G, Puah CK, Silman I, Chen K, Sussman JL, Jiang H. J. Phys. Chem. A 2004; 108: 9400–9405.
- 22 Zhu W, Tan X, Shen J, Luo X, Cheng F, Puah CM, Ji R, Chen K, Jiang H. J. Phys. Chem. A 2003; 107: 2296–2303.
- 23 Zhu W, Luo X, Puah CM, Tan J, Shen J, Gu J, Chen K, Jiang H. J. Phys. Chem. A 2004; 108: 4008–4018.
- 24 Hu J, Barbour L, Gokel GW. Proc. Natl. Acad. Sci. USA 2002; 99: 5121–5126.
- 25 Gaberšček M, Mavri J. Chem. Phys. Lett. 1999; 308: 421–427.
- 26 Bartoli S, Roelens S. J. Am. Chem. Soc. 2002; 124: 8307–8315.
- 27 Kim D, Hu S, Tarakeshwar P, Kim KS, Lisy JM. J. Phys. Chem. A 2003; 107: 1228–1238.
- 28 Yamada S, Misono T, Tsuzuki S. J. Am. Chem. Soc. 2004; 126: 9862–9872.
- 29 Ruan C, Rodgers MT. J. Am. Chem. Soc. 2004; 126: 14600–14610.
- 30 Biot C, Buisine E, Rooman M. J. Am. Chem. Soc. 2003; 125: 13988–13994.
- 31 De Wall SL, Meadows ES, Barbour LJ, Gokel GW. Proc. Natl. Acad. Sci. USA 2000; 97: 6271–6276.
- 32 Feller D, Dixon DA, Nicholas JB. J. Phys. Chem. A 2000; 104: 11414.
- 33 Boys SF, Bernardi F. Mol. Phys. 1970; 19: 553–556.
- 34 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli CJ, Ochterski W, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision C.02, Gaussian: Inc., Wallingford CT, 2004.
- 35 Kitaura K, Morokuma K. Int. J. Quantum Chem. 1976; 10: 325–340.
- 36 Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Cupuis M, Montgomery JA, Jr. J. Comput. Chem. 1993; 14: 1347–1363.
- 37 Head–Gordon M, Pole JA, Frisch MJ. Chem. Phys. Lett. 1988; 153: 503–506.
- 38 Kristyán S, Pulay P. Chem. Phys. Lett. 1994; 229: 175–180.
- 39 Rappé AK, Bernstein ER. J. Phys. Chem. A 2000; 104: 6117–6128.
- 40 Reed AE, Curtiss LA, Weinhold F. Chem. Rev. 1988; 88: 899–926.
- 41 Breneman CM, Wiberg KB. J. Comp. Chem. 1990; 11: 361–373.