Advances in drug design and therapeutic potential of selective or multitarget 5-HT1A receptor ligands
Gianfabio Giorgioni
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorCorresponding Author
Alessandro Bonifazi
Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
Correspondence Alessandro Bonifazi, Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
Email: [email protected]
Wilma Quaglia, Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Italy.
Email: [email protected]
Search for more papers by this authorLuca Botticelli
Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorCarlo Cifani
Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorFederica Matteucci
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorEmanuela Micioni Di Bonaventura
Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorMaria Vittoria Micioni Di Bonaventura
Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorMario Giannella
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorAlessandro Piergentili
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorAlessia Piergentili
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorCorresponding Author
Wilma Quaglia
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Correspondence Alessandro Bonifazi, Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
Email: [email protected]
Wilma Quaglia, Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Italy.
Email: [email protected]
Search for more papers by this authorFabio Del Bello
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorGianfabio Giorgioni
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorCorresponding Author
Alessandro Bonifazi
Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
Correspondence Alessandro Bonifazi, Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
Email: [email protected]
Wilma Quaglia, Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Italy.
Email: [email protected]
Search for more papers by this authorLuca Botticelli
Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorCarlo Cifani
Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorFederica Matteucci
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorEmanuela Micioni Di Bonaventura
Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorMaria Vittoria Micioni Di Bonaventura
Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorMario Giannella
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorAlessandro Piergentili
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorAlessia Piergentili
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorCorresponding Author
Wilma Quaglia
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Correspondence Alessandro Bonifazi, Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
Email: [email protected]
Wilma Quaglia, Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, via Madonna delle Carceri, 62032 Camerino, Italy.
Email: [email protected]
Search for more papers by this authorFabio Del Bello
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
Search for more papers by this authorAbstract
5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017–2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
No new datasets have been created or analyzed for the purpose of this review article.
REFERENCES
- 1Vialli M, Erspamer V. Ricerche sul secreto delle cellule enterocromaffini. Zeitschrift für Zellforschung und Mikroskopische Anatomie. 1937; 27(1): 81-99.
10.1007/BF00391792 Google Scholar
- 2Erspamer V. Pharmakologische studien über enteramin. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1940; 196(2): 343-365.
- 3Rapport MM, Green AA, Page IH. Crystalline serotonin. Science. 1948; 108(2804): 329-330.
- 4Nichols DE, Nichols CD. Serotonin receptors. Chem Rev. 2008; 108(5): 1614-1641.
- 5Barnes NM, Ahern GP, Becamel C, et al. International union of basic and clinical pharmacology. CX. classification of receptors for 5-hydroxytryptamine; pharmacology and function. Pharmacol Rev. 2021; 73(1): 310-520.
- 6Kobilka BK, Frielle T, Collins S, et al. An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature. 1987; 329(6134): 75-79.
- 7Quaglia W, Cifani C, Del Bello F, et al 4WD to Travel Inside the 5-HT1A Receptor World. In: S Kaneez Fatima, ed., Serotonin. IntechOpen; 2017. Ch. 4. doi:10.5772/intechopen.69348
- 8De Deurwaerdère P, Bharatiya R, Chagraoui A, Di Giovanni G. Constitutive activity of 5-HT receptors: factual analysis. Neuropharmacology. 2020; 168:107967.
- 9Gutierrez MG, Mansfield KS, Malmstadt N. The functional activity of the human serotonin 5-HT1A receptor is controlled by lipid bilayer composition. Biophys J. 2016; 110(11): 2486-2495.
- 10Xu P, Huang S, Zhang H, et al. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature. 2021; 592(7854): 469-473.
- 11Xu Z, Guo L, Yu J, et al. Ligand recognition and G-protein coupling of trace amine receptor TAAR1. Nature. 2023; 624: 672-681. doi:10.1038/s41586-023-06804-z
- 12Liu H, Zheng Y, Wang Y, et al. Recognition of methamphetamine and other amines by trace amine receptor TAAR1. Nature. 2023; 624: 663-671. doi:10.1038/s41586-023-06775-1
- 13Courtney NA, Ford CP. Mechanisms of 5-HT1A receptor-mediated transmission in dorsal raphe serotonin neurons. J Physiol. 2016; 594(4): 953-965.
- 14Palacios JM. Serotonin receptors in brain revisited. Brain Res. 2016; 1645: 46-49.
- 15Rojas PS, Fiedler JL. What do we really know about 5-HT(1A) receptor signaling in neuronal cells? Front Cell Neurosci. 2016; 10: 272.
- 16Albert PR, Vahid-Ansari F. The 5-HT1A receptor: signaling to behavior. Biochimie. 2019; 161: 34-45.
- 17Bantick RA, Deakin JFW, Grasby PM. The 5-HT1A receptor in schizophrenia: a promising target for novel atypical neuroleptics? J Psychopharmacol. 2001; 15(1): 37-46.
- 18Sałaciak K, Pytka K. Biased agonism in drug discovery: is there a future for biased 5-HT(1A) receptor agonists in the treatment of neuropsychiatric diseases? Pharmacol Ther. 2021; 227:107872.
- 19Lin J, Liu W, Guan J, et al. Latest updates on the serotonergic system in depression and anxiety. Front Synaptic Neurosci. 2023; 15:1124112.
- 20Haleem DJ. Targeting serotonin1A receptors for treating chronic pain and depression. Curr Neuropharmacol. 2019; 17(12): 1098-1108.
- 21Savitz J, Lucki I, Drevets WC. 5-HT1A receptor function in major depressive disorder. Prog Neurobiol. 2009; 88(1): 17-31.
- 22Blier P, Ward NM. Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry. 2003; 53(3): 193-203.
- 23Terranova JP, Chabot C, Barnouin MC, et al. SSR181507, a dopamine D2 receptor antagonist and 5-HT1A receptor agonist, alleviates disturbances of novelty discrimination in a social context in rats, a putative model of selective attention deficit. Psychopharmacology. 2005; 181(1): 134-144.
- 24Fiorino F, Severino B, Magli E, et al. 5-HT(1A) receptor: an old target as a new attractive tool in drug discovery from central nervous system to cancer. J Med Chem. 2014; 57(11): 4407-4426.
- 25Müller CP, Carey RJ, Huston JP, De Souza Silva MA. Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol. 2007; 81(3): 133-178.
- 26Dill MJ, Shaw J, Cramer J, Sindelar DK. 5-HT1A receptor antagonists reduce food intake and body weight by reducing total meals with no conditioned taste aversion. Pharmacol Biochem Behav. 2013; 112: 1-8.
- 27Corvino A, Fiorino F, Severino B, et al. The role of 5-HT1A receptor in cancer as a new opportunity in medicinal chemistry. Curr Med Chem. 2018; 25(27): 3214-3227.
- 28Altieri SC, Garcia-Garcia AL, Leonardo ED, Andrews AM. Rethinking 5-HT1A receptors: emerging modes of inhibitory feedback of relevance to emotion-related behavior. ACS Chem Neurosci. 2013; 4(1): 72-83.
- 29Ögren SO, Eriksson TM, Elvander-Tottie E, et al. The role of 5-HT(1A) receptors in learning and memory. Behav Brain Res. 2008; 195(1): 54-77.
- 30Lacivita E, Niso M, Mastromarino M, et al. Knowledge-based design of long-chain arylpiperazine derivatives targeting multiple serotonin receptors as potential candidates for treatment of autism spectrum disorder. ACS Chem Neurosci. 2021; 12(8): 1313-1327.
- 31Dunn JT, Mroczek J, Patel HR, Ragozzino ME. Tandospirone, a partial 5-HT1A receptor agonist, administered systemically or into anterior cingulate attenuates repetitive behaviors in Shank3B mice. Int J Neuropsychopharmacol. 2020; 23(8): 533-542.
- 32Lefevre A, Richard N, Mottolese R, Leboyer M, Sirigu A. An association between serotonin 1A receptor, gray matter volume, and sociability in healthy subjects and in autism spectrum disorder. Autism Res. 2020; 13(11): 1843-1855.
- 33Wang CC, Lin HC, Chan YH, Gean PW, Yang YK, Chen PS. 5-HT1A-receptor agonist modified amygdala activity and amygdala-associated social behavior in a valproate-induced rat autism model. Int J Neuropsychopharmacol. 2013; 16(9): 2027-2039.
- 34Kondaurova EM, Belokopytova II, Kulikova EA, et al. On the role of serotonin 5-HT(1A) receptor in autistic-like behavior: сross talk of 5-HT and BDNF systems. Behav Brain Res. 2023; 438:114168.
- 35Lin CY, Sparks A, Lee YS. Improvement of lower urinary tract function by a selective serotonin 5-HT(1A) receptor agonist, NLX-112, after chronic spinal cord injury. Exp Neurol. 2020; 332:113395.
- 36Lin CY, Li K, Thalluri R, Lee YS. Upregulated 5-HT(1A) receptors regulate lower urinary tract function in rats after complete spinal cord injury. J Neurotrauma. 2023; 40(9-10): 845-861.
- 37de Groat WC. Influence of central serotonergic mechanisms on lower urinary tract function. Urology. 2002; 59(5 suppl 1): 30-36.
- 38Su J, Meng Y, Fang Y, et al. Role of raphe magnus 5-HT(1A) receptor in increased ventilatory responses induced by intermittent hypoxia in rats. Respir Res. 2022; 23(1): 42.
- 39Gökben S, Ardıç ÜA, Serdaroğlu G. Use of buspirone and fluoxetine for breathing problems in Rett syndrome. Pediatr Neurol. 2012; 46(3): 192-194.
- 40Croft HA. Understanding the role of serotonin in female hypoactive sexual desire disorder and treatment options. J Sex Med. 2017; 14(12): 1575-1584.
- 41Stahl SM. Mechanism of action of flibanserin, a multifunctional serotonin agonist and antagonist (MSAA), in hypoactive sexual desire disorder. CNS Spectr. 2015; 20(1): 1-6.
- 42Caliendo G, Santagada V, Perissutti E, Fiorino F. Derivatives as 5HT1A receptor ligands--past and present. Curr Med Chem. 2005; 12(15): 1721-1753.
- 43Gogarnoiu ES, Vogt CD, Sanchez J, et al. Dopamine D3/D2 receptor ligands based on cariprazine for the treatment of psychostimulant use disorders that may be dual diagnosed with affective disorders. J Med Chem. 2023; 66(3): 1809-1834.
- 44Plenge P, Yang D, Salomon K, et al. The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter. Nat Commun. 2021; 12(1): 5063.
- 45Ágai-Csongor É, Domány G, Nógrádi K, et al. Discovery of cariprazine (RGH-188): a novel antipsychotic acting on dopamine D3/D2 receptors. Bioorg Med Chem Lett. 2012; 22(10): 3437-3440.
- 46Hamik A, Oksenberg D, Fischette C, Peroutka SJ. Analysis of tandospirone (SM-3997) interactions with neurotransmitter receptor binding sites. Biol Psychiatry. 1990; 28(2): 99-109.
- 47Schmidt AW, Lebel LA, Howard HR, Zorn SH. Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile. Eur J Pharmacol. 2001; 425(3): 197-201.
- 48Wróbel MZ, Chodkowski A, Marciniak M, et al. Synthesis of new 4-butyl-arylpiperazine-3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives and evaluation for their 5-HT1A and D2 receptor affinity and serotonin transporter inhibition. Bioorg Chem. 2020; 97:103662.
- 49Paluchowska MH, Bugno R, Bojarski AJ, et al. Novel, flexible, and conformationally defined analogs of gepirone: synthesis and 5-HT1A, 5-HT2A, and D2 receptor activity. Bioorg Med Chem. 2005; 13(4): 1195-1200.
- 50Fornal CA, Metzler CW, Gallegos RA, Veasey SC, McCreary AC, Jacobs BL. WAY-100635, a potent and selective 5-hydroxytryptamine1A antagonist, increases serotonergic neuronal activity in behaving cats: comparison with (S)-WAY-100135. J Pharmacol Exp Ther. 1996; 278(2): 752-762.
- 51Sniecikowska J, Newman-Tancredi A, Kolaczkowski M. From receptor selectivity to functional selectivity: the rise of biased agonism in 5-HT1A receptor drug discovery. Curr Top Med Chem. 2019; 19(26): 2393-2420.
- 52Newman-Tancredi A, Depoortère RY, Kleven MS, Kołaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: serotonin 5-HT1A receptor functional selectivity for CNS disorders. Pharmacol Ther. 2022; 229:107937.
- 53Fiorino F, Magli E, Kędzierska E, et al. New 5-HT1A, 5HT2A and 5HT2C receptor ligands containing a picolinic nucleus: synthesis, in vitro and in vivo pharmacological evaluation. Bioorg Med Chem. 2017; 25(20): 5820-5837.
- 54Fiorino F, Severino B, Magli E, et al. New potent 5-HT(2A) receptor ligands containing an N’-cyanopicolinamidine nucleus: synthesis and in vitro pharmacological evaluation. Eur J Med Chem. 2012; 47(1): 520-529.
- 55Fiorino F, Ciano A, Magli E, et al. Synthesis, in vitro and in vivo pharmacological evaluation of serotoninergic ligands containing an isonicotinic nucleus. Eur J Med Chem. 2016; 110: 133-150.
- 56Kędzierska E, Fiorino F, Magli E, et al. New arylpiperazine derivatives with antidepressant-like activity containing isonicotinic and picolinic nuclei: evidence for serotonergic system involvement. Naunyn-Schmiedeberg's Arch Pharmacol. 2019; 392(6): 743-754.
- 57Penjišević JZ, Šukalović VB, Dukic-Stefanovic S, Deuther-Conrad W, Andrić DB, Kostić-Rajačić SV. Synthesis of novel 5-HT1A arylpiperazine ligands: binding data and computer-aided analysis of pharmacological potency. Arabian J Chem. 2023; 16(4):104636.
- 58Ostrowska K, Młodzikowska K, Głuch-Lutwin M, Gryboś A, Siwek A. Synthesis of a new series of aryl/heteroarylpiperazinyl derivatives of 8-acetyl-7-hydroxy-4-methylcoumarin with low nanomolar 5-HT1A affinities. Eur J Med Chem. 2017; 137: 108-116.
- 59Chen Y, Wang S, Xu X, et al. Synthesis and biological investigation of coumarin piperazine (piperidine) derivatives as potential multireceptor atypical antipsychotics. J Med Chem. 2013; 56(11): 4671-4690.
- 60Chen Y, Lan Y, Wang S, et al. Synthesis and evaluation of new coumarin derivatives as potential atypical antipsychotics. Eur J Med Chem. 2014; 74: 427-439.
- 61Żołek T, Dömötör O, Ostrowska K, Enyedy ÉA, Maciejewska D. Evaluation of blood-brain barrier penetration and examination of binding to human serum albumin of 7-O-arylpiperazinylcoumarins as potential antipsychotic agents. Bioorg Chem. 2019; 84: 211-225.
- 62Ostrowska K, Grzeszczuk D, Głuch-Lutwin M, et al. 5-HT1A and 5-HT2A receptors affinity, docking studies and pharmacological evaluation of a series of 8-acetyl-7-hydroxy-4-methylcoumarin derivatives. Bioorg Med Chem. 2018; 26(2): 527-535.
- 63Ostrowska K, Grzeszczuk D, Głuch-Lutwin M, et al. Development of selective agents targeting serotonin 5HT1A receptors with subnanomolar activities based on a coumarin core. MedChemComm. 2017; 8(8): 1690-1696.
- 64Ostrowska K, Leśniak A, Karczyńska U, et al. 6-Acetyl-5-hydroxy-4,7-dimethylcoumarin derivatives: design, synthesis, modeling studies, 5-HT(1A), 5-HT(2A) and D(2) receptors affinity. Bioorg Chem. 2020; 100:103912.
- 65Żołek T, Enyedy ÉA, Ostrowska K, Pósa V, Maciejewska D. Drug likeness prediction of 5-hydroxy-substituted coumarins with high affinity to 5-HT1A and 5-HT2A receptors. Eur J Pharm Sci. 2018; 115: 25-36.
- 66Ostrowska K, Leśniak A, Czarnocka Z, Chmiel J, Bujalska-Zadrożny M, Trzaskowski B. Design, synthesis, and biological evaluation of a series of 5- and 7-hydroxycoumarin derivatives as 5-HT1A serotonin receptor antagonists. Pharmaceuticals. 2021; 14(3): 179.
- 67Ostrowska K, Leśniak A, Gryczka W, Dobrzycki Ł, Bujalska-Zadrożny M, Trzaskowski B. New piperazine derivatives of 6-Acetyl-7-hydroxy-4-methylcoumarin as 5-HT(1A) receptor agents. Int J Mol Sci. 2023; 24(3): 2779.
- 68Jaśkowska J, Zaręba P, Śliwa P, Pindelska E, Satała G, Majka Z. Microwave-assisted synthesis of trazodone and its derivatives as new 5-HT(1A) ligands: binding and docking studies. Molecules. 2019; 24(8): 1609.
- 69Cusack B, Nelson A, Richelson E. Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology. 1994; 114(4): 559-565.
- 70Zaręba P, Partyka A, Latacz G, Satała G, Zajdel P, Jaśkowska J. New, eco-friendly method for synthesis of 3-chlorophenyl and 1,1′-biphenyl piperazinylhexyl trazodone analogues with dual 5-HT1A/5-HT7 affinity and its antidepressant-like activity. Molecules (Basel, Switzerland). 2022; 27(21): 7270.
- 71Zaręba P, Śliwa P, Satała G, Zajdel P, Latacz G, Jaśkowska J. New N-aryl-N’-aryl-/(thio)ureido-/sulfamoylamino-derivatives of alkyl/alkylcarbamoyl piperazines: effect of structural modifications on selectivity over 5-HT(1A) receptor. Eur J Med Chem. 2022; 235:114319.
- 72Xu L, Zhou S, Yu K, et al. Molecular modeling of the 3D structure of 5-HT1AR: discovery of novel 5-HT1AR agonists via dynamic pharmacophore-based virtual screening. J Chem Inf Model. 2013; 53(12): 3202-3211.
- 73Zhu C, Li X, Peng W, Fu W. Discovery of novel indolealkylpiperazine derivatives as potent 5-HT1A receptor agonists for the potential future treatment of depression. Molecules. 2020; 25(21): 5078.
- 74Heinrich T, Böttcher H, Gericke R, et al. Synthesis and structure--activity relationship in a class of indolebutylpiperazines as dual 5-HT(1A) receptor agonists and serotonin reuptake inhibitors. J Med Chem. 2004; 47(19): 4684-4692.
- 75Lian P, Li L, Geng C, Zhen X, Fu W. Higher-affinity agonists of 5-HT1AR discovered through tuning the binding-site flexibility. J Chem Inf Model. 2015; 55(8): 1616-1627.
- 76Sorbi C, Franchini S, Tait A, et al. 1,3-Dioxolane-based ligands as rigid analogues of naftopidil: Structure–Affinity/Activity relationships at α1and 5-HT1AReceptors. ChemMedChem. 2009; 4(3): 393-399.
- 77Franchini S, Manasieva LI, Sorbi C, et al. Synthesis, biological evaluation and molecular modeling of 1-oxa-4-thiaspiro- and 1,4-dithiaspiro[4.5]decane derivatives as potent and selective 5-HT(1A) receptor agonists. Eur J Med Chem. 2017; 125: 435-452.
- 78Franchini S, Prandi A, Sorbi C, et al. Discovery of a new series of 5-HT1A receptor agonists. Bioorg Med Chem Lett. 2010; 20(6): 2017-2020.
- 79Franchini S, Bencheva LI, Battisti UM, et al. Synthesis and biological evaluation of 1,3-dioxolane-based 5-HT(1A) receptor agonists for CNS disorders and neuropathic pain. Future Med Chem. 2018; 10(18): 2137-2154.
- 80Linciano P, Sorbi C, Comitato A, et al. Identification of a potent and selective 5-HT1A receptor agonist with in vitro and in vivo antinociceptive activity. ACS Chem Neurosci. 2020; 11(24): 4111-4127.
- 81Franchini S, Sorbi C, Linciano P, et al. 1,3-Dioxane as a scaffold for potent and selective 5-HT(1A)R agonist with in-vivo anxiolytic, anti-depressant and anti-nociceptive activity. Eur J Med Chem. 2019; 176: 310-325.
- 82Sorbi C, Franchini S, Buccioni M, Cilia A, Pirona L, Brasili L. Effect of the replacement of the o-methoxyphenyl moiety with nitrogen-containing aromatic rings within N-phenyl-piperazine and phenoxy-ethylamine-based 1,3-dioxo/oxathio/dithiolanes as α1 and 5-HT1A receptor ligands. Results in Chemistry. 2022; 4:100425.
- 83Del Bello F, Bonifazi A, Giannella M, et al. The replacement of the 2-methoxy substituent of N-((6,6-diphenyl-1,4-dioxan-2-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-amine improves the selectivity for 5-HT(1A) receptor over α(1)-adrenoceptor and D(2)-like receptor subtypes. Eur J Med Chem. 2017; 125: 233-244.
- 84Quaglia W, Piergentili A, Del Bello F, et al. Structure−activity relationships in 1,4-benzodioxan-related compounds. 9. From 1,4-benzodioxane to 1,4-dioxane ring as a promising template of novel α1D-Adrenoreceptor antagonists, 5-HT1AFull agonists, and cytotoxic agents. J Med Chem. 2008; 51(20): 6359-6370.
- 85Bonifazi A, Piergentili A, Del Bello F, et al. Structure-activity relationships in 1,4-benzodioxan-related compounds. 11. Reversed enantioselectivity of 1,4-dioxane derivatives in α1-adrenergic and 5-HT1A receptor binding sites recognition. J Med Chem. 2013; 56(2): 584-588.
- 86Mammoli V, Bonifazi A, Del Bello F, et al. Favourable involvement of α2A-adrenoreceptor antagonism in the I2-imidazoline binding sites-mediated morphine analgesia enhancement. Bioorg Med Chem. 2012; 20(7): 2259-2265.
- 87Del Bello F, Barocelli E, Bertoni S, et al. 1,4-Dioxane, a suitable scaffold for the development of novel M3Muscarinic receptor antagonists. J Med Chem. 2012; 55(4): 1783-1787.
- 88Bonifazi A, Del Bello F, Mammoli V, et al. Novel potent N-methyl-d-aspartate (NMDA) receptor antagonists or σ1 receptor ligands based on properly substituted 1,4-dioxane ring. J Med Chem. 2015; 58(21): 8601-8615.
- 89Del Bello F, Bonifazi A, Giorgioni G, et al. Novel muscarinic acetylcholine receptor hybrid ligands embedding quinuclidine and 1,4-dioxane fragments. Eur J Med Chem. 2017; 137: 327-337.
- 90Morelli MB, Amantini C, Nabissi M, et al. Role of the NMDA receptor in the antitumor activity of chiral 1,4-dioxane ligands in MCF-7 and SKBR3 breast cancer cells. ACS Med Chem Lett. 2019; 10(4): 511-516.
- 91Del Bello F, Bonifazi A, Giorgioni G, et al. Novel potent muscarinic receptor antagonists: investigation on the nature of lipophilic substituents in the 5- and/or 6-positions of the 1,4-dioxane nucleus. J Med Chem. 2020; 63(11): 5763-5782.
- 92Del Bello F, Bonifazi A, Giorgioni G, et al. Chemical manipulations on the 1,4-dioxane ring of 5-HT(1A) receptor agonists lead to antagonists endowed with antitumor activity in prostate cancer cells. Eur J Med Chem. 2019; 168: 461-473.
- 93Tan L, Yan W, McCorvy JD, Cheng J. Biased ligands of G protein-coupled receptors (GPCRs): structure-functional selectivity relationships (SFSRs) and therapeutic potential. J Med Chem. 2018; 61(22): 9841-9878.
- 94Michel MC, Charlton SJ. Biased agonism in drug discovery—is it too soon to choose a path? Mol Pharmacol. 2018; 93(4): 259-265.
- 95Newman-Tancredi A, Martel JC, Assié MB, et al. Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br J Pharmacol. 2009; 156(2): 338-353.
- 96Assié MB, Lomenech H, Ravailhe V, Faucillon V, Newman-Tancredi A. Rapid desensitization of somatodendritic 5-HT1A receptors by chronic administration of the high-efficacy 5-HT1A agonist, F13714: a microdialysis study in the rat. Br J Pharmacol. 2006; 149(2): 170-178.
- 97Lladó-Pelfort L, Assié MB, Newman-Tancredi A, Artigas F, Celada P. Preferential in vivo action of F15599, a novel 5-HT(1A) receptor agonist, at postsynaptic 5-HT(1A) receptors. Br J Pharmacol. 2010; 160(8): 1929-1940.
- 98Millan MJ, Canton H, Gobert A, et al. Novel benzodioxopiperazines acting as antagonists at postsynaptic 5-HT1A receptors and as agonists at 5-HT1A autoreceptors: a comparative pharmacological characterization with proposed 5-HT1A antagonists. J Pharmacol Exp Ther. 1994; 268(1): 337-352.
- 99Resstel LBM, Tavares RF, Lisboa SFS, Joca SRL, Corrêa FMA, Guimarães FS. 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Br J Pharmacol. 2009; 156(1): 181-188.
- 100Millan MJ, Rivet JM, Canton H, et al. S 15535: a highly selective benzodioxopiperazine 5-HT1A receptor ligand which acts as an agonist and an antagonist at presynaptic and postsynaptic sites respectively. Eur J Pharmacol. 1993; 230(1): 99-102.
- 101Jastrzębska-Więsek M, Partyka A, Rychtyk J, et al. Activity of serotonin 5-HT(1A) receptor biased agonists in rat: anxiolytic and antidepressant-like properties. ACS Chem Neurosci. 2018; 9(5): 1040-1050.
- 102Celada P, Bortolozzi A, Artigas F. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs. 2013; 27(9): 703-716.
- 103Levitt ES, Hunnicutt BJ, Knopp SJ, Williams JT, Bissonnette JM. A selective 5-HT1a receptor agonist improves respiration in a mouse model of Rett syndrome. J Appl Physiol. 2013; 115(11): 1626-1633.
- 104Depoortère R, Bardin L, Varney MA, Newman-Tancredi A. Serotonin 5-HT(1A) receptor biased agonists display differential anxiolytic activity in a rat social interaction model. ACS Chem Neurosci. 2019; 10(7): 3101-3107.
- 105Sniecikowska J, Gluch-Lutwin M, Bucki A, et al. Novel aryloxyethyl derivatives of 1-(1-benzoylpiperidin-4-yl)methanamine as the extracellular regulated kinases 1/2 (ERK1/2) phosphorylation-preferring serotonin 5-HT(1A) receptor-biased agonists with robust antidepressant-like activity. J Med Chem. 2019; 62(5): 2750-2771.
- 106Sniecikowska J, Gluch-Lutwin M, Bucki A, et al. Discovery of novel pERK1/2- or β-arrestin-preferring 5-HT(1A) receptor-biased agonists: diversified therapeutic-like versus side effect profile. J Med Chem. 2020; 63(19): 10946-10971.
- 107Berendsen HHG, Bourgondien FGM, Broekkamp CLE. Role of dorsal and median raphe nuclei in lower lip retraction in rats. Eur J Pharmacol. 1994; 263(3): 315-318.
- 108Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discovery. 2004; 3(4): 353-359.
- 109Ramsay RR, Popovic-Nikolic MR, Nikolic K, Uliassi E, Bolognesi ML. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 2018; 7(1): 3.
- 110Naumenko VS, Popova NK, Lacivita E, Leopoldo M, Ponimaskin EG. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci Ther. 2014; 20(7): 582-590.
- 111Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav. 2002; 71(4): 533-554.
- 112Renner U, Zeug A, Woehler A, et al Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J Cell Sci. 2012; 125(Pt 10): 2486-2499.
- 113Walsh JJ, Llorach P, Cardozo Pinto DF, et al. Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. Neuropsychopharmacology. 2021; 46(11): 2000-2010.
- 114Sourbron J, Lagae L. Serotonin receptors in epilepsy: novel treatment targets? Epilepsia Open. 2022; 7(2): 231-246.
- 115Modica MN, Intagliata S, Pittalà V, et al. Synthesis and binding properties of new long-chain 4-substituted piperazine derivatives as 5-HT1A and 5-HT7 receptor ligands. Bioorg Med Chem Lett. 2015; 25(7): 1427-1430.
- 116Intagliata S, Modica MN, Pittalà V, et al. New N- and O-arylpiperazinylalkyl pyrimidines and 2-methylquinazolines derivatives as 5-HT7 and 5-HT1A receptor ligands: synthesis, structure-activity relationships, and molecular modeling studies. Bioorg Med Chem. 2017; 25(3): 1250-1259.
- 117Peprah K, Zhu XY, Eyunni SVK, Setola V, Roth BL, Ablordeppey SY. Multi-receptor drug design: haloperidol as a scaffold for the design and synthesis of atypical antipsychotic agents. Bioorg Med Chem. 2012; 20(3): 1291-1297.
- 118Bricker BA, Peprah K, Kang HJ, Ablordeppey SY. Evaluation of SYA16263 as a new potential antipsychotic agent without catalepsy. Pharmacol Biochem Behav. 2019; 179: 55-62.
- 119Ofori E, Onyameh EK, Gonela UM, et al. New dual 5-HT1A and 5-HT7 receptor ligands derived from SYA16263. Eur J Med Chem. 2021; 214:113243.
- 120Bricker BA, Voshavar C, Onyameh EK, et al. Enantiomeric separation, absolute configuration by X-ray crystallographic analysis, and functional evaluation of enantiomers of the dual ligand, SYA0340 at 5-HT1A and 5-HT7A receptors. ACS Omega. 2023; 8(24): 21736-21744.
- 121Czopek A, Bucki A, Kołaczkowski M, et al. Novel multitarget 5-arylidenehydantoins with arylpiperazinealkyl fragment: pharmacological evaluation and investigation of cytotoxicity and metabolic stability. Bioorg Med Chem. 2019; 27(18): 4163-4173.
- 122Abou-Gharbia MA, Childers WE, Fletcher H, et al. Synthesis and SAR of adatanserin: novel adamantyl aryl- and heteroarylpiperazines with dual serotonin 5-HT1A and 5-HT2 activity as potential anxiolytic and antidepressant agents. J Med Chem. 1999; 42(25): 5077-5094.
- 123Diouf O, Carato P, Depreux P, et al. 5-HT1A and 5-HT2A ligands with anxiolytic and antipanic-like properties. Bioorg Med Chem Lett. 1997; 7(20): 2579-2584.
- 124Evans CA, Zuluaga A, Vasquez Matute D, Baradaran-Noviri S, Perez-Cervantes N, Siegler MA. Synthesis and biological evaluation of thioadatanserin and its dialkylated products as partial 5-HTR1A agonists and 5-HTR2A antagonists for potential use in depression and anxiety disorders. Bioorg Med Chem Lett. 2020; 30(16):127358.
- 125Fiorino F, Perissutti E, Severino B, et al. New 5-hydroxytryptamine(1A) receptor ligands containing a norbornene nucleus: synthesis and in vitro pharmacological evaluation. J Med Chem. 2005; 48(17): 5495-5503.
- 126Sparaco R, Kędzierska E, Kaczor AA, et al. Synthesis, docking studies and pharmacological evaluation of serotoninergic ligands containing a 5-norbornene-2-carboxamide nucleus. Molecules. 2022; 27(19): 6492.
- 127Magli E, Kędzierska E, Kaczor AA, et al. Synthesis, docking studies, and pharmacological evaluation of 2-hydroxypropyl-4-arylpiperazine derivatives as serotoninergic ligands. Arch Pharm. 2021; 354(5):e2000414.
- 128Fiorino F, Magli E, Severino B, et al. Synthesis and in vitro pharmacological evaluation of novel 2-hydroxypropyl-4-arylpiperazine derivatives as serotoninergic ligands. Arch Pharm. 2014; 347(10): 698-706.
- 129Lacivita E, Niso M, Stama ML, et al. Privileged scaffold-based design to identify a novel drug-like 5-HT7 receptor-preferring agonist to target Fragile X syndrome. Eur J Med Chem. 2020; 199:112395.
- 130Mastromarino M, Niso M, Abate C, et al. Design and synthesis of arylpiperazine serotonergic/dopaminergic ligands with neuroprotective properties. Molecules. 2022; 27(4): 1297.
- 131Chugani DC, Chugani HT, Wiznitzer M, et al. Efficacy of low-dose buspirone for restricted and repetitive behavior in young children with autism spectrum disorder: A randomized trial. J Pediatr. 2016; 170:45-53.e4 e41-44.
- 132Costa L, Sardone LM, Bonaccorso CM, et al. Activation of serotonin 5-HT(7) receptors modulates hippocampal synaptic plasticity by stimulation of adenylate cyclases and rescues learning and behavior in a mouse model of fragile X syndrome. Front Mol Neurosci. 2018; 11: 353.
- 133Vigli D, Rusconi L, Valenti D, et al. Rescue of prepulse inhibition deficit and brain mitochondrial dysfunction by pharmacological stimulation of the central serotonin receptor 7 in a mouse model of CDKL5 deficiency disorder. Neuropharmacology. 2019; 144: 104-114.
- 134Amodeo DA, Rivera E, Cook, Jr. EH, Sweeney JA, Ragozzino ME. 5HT(2A) receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice. Genes Brain Behav. 2017; 16(3): 342-351.
- 135Amodeo DA, Rivera E, Dunn JT, Ragozzino ME. M100907 attenuates elevated grooming behavior in the BTBR mouse. Behav Brain Res. 2016; 313: 67-70.
- 136Wager TT, Hou X, Verhoest PR, Villalobos A. Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chem Neurosci. 2016; 7(6): 767-775.
- 137Pangrazzi L, Balasco L, Bozzi Y. Oxidative stress and immune system dysfunction in autism spectrum disorders. Int J Mol Sci. 2020; 21(9): 3293.
- 138Ghoneim OM, Legere JA, Golbraikh A, Tropsha A, Booth RG. Novel ligands for the human histamine H1 receptor: synthesis, pharmacology, and comparative molecular field analysis studies of 2-dimethylamino-5-(6)-phenyl-1,2,3,4-tetrahydronaphthalenes. Bioorg Med Chem. 2006; 14(19): 6640-6658.
- 139Canal CE, Felsing DE, Liu Y, et al. An orally active phenylaminotetralin-chemotype serotonin 5-HT7 and 5-HT1A receptor partial agonist that corrects motor stereotypy in mouse models. ACS Chem Neurosci. 2015; 6(7): 1259-1270.
- 140Perry CK, Casey AB, Felsing DE, et al. Synthesis of novel 5-substituted-2-aminotetralin analogs: 5-HT1A and 5-HT7 G protein-coupled receptor affinity, 3D-QSAR and molecular modeling. Bioorg Med Chem. 2020; 28(3):115262.
- 141Armstrong JL, Casey AB, Saraf TS, Mukherjee M, Booth RG, Canal CE. (S)-5-(2′-Fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine, a serotonin receptor modulator, possesses anticonvulsant, prosocial, and anxiolytic-like properties in an Fmr1 knockout mouse model of fragile X syndrome and autism spectrum disorder. ACS Pharmacol Transl Sci. 2020; 3(3): 509-523.
- 142Saraf TS, McGlynn RP, Bhatavdekar OM, Booth RG, Canal CE. FPT, a 2-aminotetralin, is a potent serotonin 5-HT1A, 5-HT1B, and 5-HT1D receptor agonist that modulates cortical electroencephalogram activity in adult fmr1 knockout mice. ACS Chem Neurosci. 2022; 13(24): 3629-3640.
- 143Matsushima Y, Eguchi F, Kikukawa T, Matsuda T. Historical overview of psychoactive mushrooms. Inflamm Regen. 2009; 29: 47-58.
- 144Kaczor AA, Kędzierska E, Wróbel TM, et al. Synthesis, structural and behavioral studies of indole derivatives D2AAK5, D2AAK6 and D2AAK7 as serotonin 5-HT1A and 5-HT2A receptor ligands. Molecules. 2023; 28(1): 383.
- 145Artigas F, Bortolozzi A, Celada P. Can we increase speed and efficacy of antidepressant treatments? Part I: general aspects and monoamine-based strategies. Eur Neuropsychopharmacol. 2018; 28(4): 445-456.
- 146Sahli ZT, Banerjee P, Tarazi FI. The preclinical and clinical effects of vilazodone for the treatment of major depressive disorder. Expert Opin Drug Discovery. 2016; 11(5): 515-523.
- 147Robinson DS, Kajdasz DK, Gallipoli S, Whalen H, Wamil A, Reed CR. A 1-year, open-label study assessing the safety and tolerability of vilazodone in patients with major depressive disorder. J Clin Psychopharmacol. 2011; 31(5): 643-646.
- 148Millan MJ. Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs. Neurotherapeutics. 2009; 6(1): 53-77.
- 149Moltzen E, Bang-Andersen B. Serotonin reuptake inhibitors: the corner stone in treatment of depression for half a century-a medicinal chemistry survey. Curr Top Med Chem. 2006; 6(17): 1801-1823.
- 150Pessoa-Mahana H, Silva-Matus P, Pessoa-Mahana CD, et al Synthesis and docking of novel 3-indolylpropyl derivatives as new polypharmacological agents displaying affinity for 5-HT(1A) R/SERT. Arch Pharm (Weinheim). 2017; 350(1):e1600271.
- 151Zhang D, Luo G, Ding X, Lu C. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sin B. 2012; 2(6): 549-561.
- 152Venkatesan AM, Santos OD, Asselin M. et al. Inventors. Benzofuranyl- and benzothienyl- piperazinyl quinolines and methods of their use. US patent US 20090054454 A1 2007.
- 153Gu ZS, Xiao Y, Zhang QW, Li JQ. Synthesis and antidepressant activity of a series of arylalkanol and aralkyl piperazine derivatives targeting SSRI/5-HT(1A)/5-HT(7). Bioorg Med Chem Lett. 2017; 27(24): 5420-5423.
- 154Gu ZS, Zhou A, Xiao Y, Zhang QW, Li JQ. Synthesis and antidepressant-like activity of novel aralkyl piperazine derivatives targeting SSRI/5-HT(1A)/5-HT(7). Eur J Med Chem. 2018; 144: 701-715.
- 155Gu ZS, Wang WT, Qian H, et al. Synthesis and antidepressant effect of novel aralkyl piperazine and piperidine derivatives targeting SSRI/5-HT(1A)/5-HT(7). Bioorg Med Chem Lett. 2019; 29(23):126703.
- 156Serafinowska HT, Blaney FE, Lovell PJ, et al. Novel 5-HT1A/1B/1D receptors antagonists with potent 5-HT reuptake inhibitory activity. Bioorg Med Chem Lett. 2008; 18(20): 5581-5585.
- 157Zajdel P, Kurczab R, Grychowska K, Satała G, Pawłowski M, Bojarski AJ. The multiobjective based design, synthesis and evaluation of the arylsulfonamide/amide derivatives of aryloxyethyl- and arylthioethyl- piperidines and pyrrolidines as a novel class of potent 5-HT7 receptor antagonists. Eur J Med Chem. 2012; 56: 348-360.
- 158Wang WT, Qian H, Wu JW, Chen XW, Li JQ. Synthesis and antidepressant-like activity of novel alkoxy-piperidine derivatives targeting SSRI/5-HT(1A)/5-HT(7). Bioorg Med Chem Lett. 2019; 29(24):126769.
- 159Vacher B, Bonnaud B, Funes P, et al. Design and synthesis of a series of 6-substituted-2-pyridinylmethylamine derivatives as novel, high-affinity, selective agonists at 5-HT1A receptors. J Med Chem. 1998; 41(25): 5070-5083.
- 160Yuan RX, Jiang KY, Wu JW, et al. Synthesis and antidepressant activity of novel 1-(1-benzoylpiperidin-4-yl) methanamine derivatives selectively targeting SSRI/5-HT(1A). Bioorg Med Chem Lett. 2022; 76:129006.
- 161Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005; 48(21): 6523-6543.
- 162Yoshinaga H, Masumoto S, Koyama K, et al. Discovery of SMP-304, a novel benzylpiperidine derivative with serotonin transporter inhibitory activity and 5-HT(1A) weak partial agonistic activity showing the antidepressant-like effect. Bioorg Med Chem. 2017; 25(1): 293-304.
- 163Marcusson JO, Norinder U, Högberg T, Ross SB. Inhibition of [3H]paroxetine binding by various serotonin uptake inhibitors: structure-activity relationships. Eur J Pharmacol. 1992; 215(2-3): 191-198.
- 164Marcusson JO, Ross SB. Binding of some antidepressants to the 5-hydroxytryptamine transporter in brain and platelets. Psychopharmacology. 1990; 102(2): 145-155.
- 165Yoshinaga H, Nishida T, Sasaki I, et al. Discovery of DSP-1053, a novel benzylpiperidine derivative with potent serotonin transporter inhibitory activity and partial 5-HT(1A) receptor agonistic activity. Bioorg Med Chem. 2018; 26(8): 1614-1627.
- 166Gomółka A, Ciesielska A, Wróbel MZ, et al. Novel 4-aryl-pyrido[1,2-c]pyrimidines with dual SSRI and 5-HT(1A) activity. Part 5. Eur J Med Chem. 2015; 98: 221-236.
- 167Ślifirski G, Król M, Kleps J, et al. Synthesis of novel pyrido[1,2-c]pyrimidine derivatives with rigidized tryptamine moiety as potential SSRI and 5-HT(1A) receptor ligands. Eur J Med Chem. 2019; 166: 144-158.
- 168Ślifirski G, Król M, Kleps J, et al. Synthesis of new 5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine derivatives with rigidized tryptamine moiety as potential SSRI and 5-HT(1A) receptor ligands. Eur J Med Chem. 2019; 180: 383-397.
- 169Wang L, Zhang Y, Du X, Ding T, Gong W, Liu F. Review of antidepressants in clinic and active ingredients of traditional Chinese Medicine targeting 5-HT1A receptors. Biomed Pharmacother. 2019; 120:109408.
- 170Kondej M, Stępnicki P, Kaczor AA. Multi-target approach for drug discovery against schizophrenia. Int J Mol Sci. 2018; 19(10): 3105.
- 171Cavalli A, Bolognesi ML, Minarini A, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008; 51(3): 347-372.
- 172Brindisi M, Butini S, Franceschini S, et al. Targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors for developing effective antipsychotics: synthesis, biological characterization, and behavioral studies. J Med Chem. 2014; 57(22): 9578-9597.
- 173Ye N, Song Z, Zhang A. Dual ligands targeting dopamine D2 and serotonin 5-HT1A receptors as new antipsychotical or anti-Parkinsonian agents. Curr Med Chem. 2014; 21(4): 437-457.
- 174Garay RP, Bourin M, de Paillette E, Samalin L, Hameg A, Llorca PM. Potential serotonergic agents for the treatment of schizophrenia. Expert Opin Invest Drugs. 2016; 25(2): 159-170.
- 175Pouzet B, Didriksen M, Arnt J. Effects of the 5-HT(7) receptor antagonist SB-258741 in animal models for schizophrenia. Pharmacol Biochem Behav. 2002; 71(4): 655-665.
- 176Huot P. 5-HT(1A) agonists and dyskinesia in Parkinson's disease: a pharmacological perspective. Neurodegener Dis Manag. 2018; 8(4): 207-209.
- 177Etievant A. Partial dopamine D2/serotonin 5-HT1A receptor agonists as new therapeutic agents. The Open Neuropsychopharmacol J. 2010; 3: 1-12.
- 178Kubacka M, Mogilski S, Bednarski M, et al. Antidepressant-like activity of aroxyalkyl derivatives of 2-methoxyphenylpiperazine and evidence for the involvement of serotonin receptor subtypes in their mechanism of action. Pharmacol Biochem Behav. 2016; 141: 28-41.
- 179Waszkielewicz AM, Pytka K, Rapacz A, et al. Synthesis and evaluation of antidepressant-like activity of some 4-substituted 1-(2-methoxyphenyl)piperazine derivatives. Chem Biol Drug Des. 2015; 85(3): 326-335.
- 180Waszkielewicz AM, Kubacka M, Pańczyk K, et al. Synthesis and activity of newly designed aroxyalkyl or aroxyethoxyethyl derivatives of piperazine on the cardiovascular and the central nervous systems. Bioorg Med Chem Lett. 2016; 26(21): 5315-5321.
- 181Pytka K, Partyka A, Jastrzębska-Więsek M, et al. Antidepressant- and anxiolytic-like effects of new dual 5-HT1A and 5-HT7 antagonists in animal models. PLoS One. 2015; 10(11):e0142499.
- 182Pańczyk K, Pytka K, Jakubczyk M, et al. Synthesis and activity of di- or trisubstituted N-(phenoxyalkyl)- or N-{2-[2-(phenoxy)ethoxy]ethyl}piperazine derivatives on the central nervous system. Bioorg Med Chem Lett. 2018; 28(11): 2039-2049.
- 183Kowalski P, Śliwa P, Satała G, Kurczab R, Bartos I, Zuchowicz K. The effect of carboxamide/sulfonamide replacement in arylpiperazinylalkyl derivatives on activity to serotonin and dopamine receptors. Arch Pharm. 2017; 350(10):1700090.
- 184Sałaciak K, Malikowska-Racia N, Lustyk K, et al. Synthesis and evaluation of the antidepressant-like properties of HBK-10, a novel 2-methoxyphenylpiperazine derivative targeting the 5-HT1A and D2 receptors. Pharmaceuticals. 2021; 14(8): 744.
- 185Marona H, Kubacka M, Filipek B, et al. Synthesis, alpha-adrenoceptors affinity and alpha 1-adrenoceptor antagonistic properties of some 1,4-substituted piperazine derivatives. Pharmazie. 2011; 66(10): 733-739.
- 186Marona H, Antkiewicz-Michaluk L. Synthesis and anticonvulsant activity of 1, 2-aminoalkanol derivatives. Acta Pol Pharm. 1998; 55: 487-498.
- 187Jaśkowska J, Drabczyk AK, Śliwa P, et al. Ultrasound assisted one-pot synthesis and preliminary in vitro studies of salicylamide arylpiperazines as dual 5-HT1A/5-HT7 ligands. J Mol Struct. 2023; 1275:134585.
- 188Żmudzka E, Lustyk K, Głuch-Lutwin M, et al. Novel multimodal salicylamide derivative with antidepressant-like, anxiolytic-like, antipsychotic-like, and anti-amnesic activity in mice. Pharmaceuticals. 2023; 16(2): 175.
- 189Żmudzka E, Lustyk K, Sałaciak K, et al. Potential anti-amnesic activity of a novel multimodal derivative of salicylamide, JJGW08, in mice. Pharmaceuticals. 2023; 16(3): 399.
- 190Żmudzka E, Lustyk K, Głuch-Lutwin M, et al. Antipsychotic- and anxiolytic-like properties of a multimodal compound JJGW08 in rodents. Int J Mol Sci. 2022; 23(24):15929.
- 191Zajdel P, Marciniec K, Maślankiewicz A, et al. Quinoline- and isoquinoline-sulfonamide derivatives of LCAP as potent CNS multi-receptor-5-HT1A/5-HT2A/5-HT7 and D2/D3/D4-agents: the synthesis and pharmacological evaluation. Bioorg Med Chem. 2012; 20(4): 1545-1556.
- 192Partyka A, Kurczab R, Canale V, et al. The impact of the halogen bonding on D2 and 5-HT1A/5-HT7 receptor activity of azinesulfonamides of 4-[(2-ethyl)piperidinyl-1-yl]phenylpiperazines with antipsychotic and antidepressant properties. Bioorg Med Chem. 2017; 25(14): 3638-3648.
- 193Glennon RA, Naiman NA, Lyon RA, Titeler M. Arylpiperazine derivatives as high-affinity 5-HT1A serotonin ligands. J Med Chem. 1988; 31(10): 1968-1971.
- 194Kułaga D, Jaśkowska J, Satała G. Design, synthesis and biological evaluation of novel serotonin and dopamine receptor ligands being 6-bromohexyl saccharine derivatives. Bioorg Med Chem Lett. 2019; 29(21):126667.
- 195Kułaga D, Jaśkowska J, Satała G. Radioligand and computational insight in structure - activity relationship of saccharin derivatives being ipsapirone and revospirone analogues. Bioorg Med Chem Lett. 2021; 42:128028.
- 196Zaręba P, Jaśkowska J, Czekaj I, Satała G. Design, synthesis and molecular modelling of new bulky Fananserin derivatives with altered pharmacological profile as potential antidepressants. Bioorg Med Chem. 2019; 27(15): 3396-3407.
- 197Zaręba P, Jaśkowska J, Śliwa P, Satała G. New dual ligands for the D2 and 5-HT1A receptors from the group of 1, 8-naphthyl derivatives of LCAP. Bioorg Med Chem Lett. 2019; 29(16): 2236-2242.
- 198Wróbel MZ, Chodkowski A, Herold F, et al. Synthesis and biological evaluation of novel pyrrolidine-2,5-dione derivatives as potential antidepressant agents. Part 1. Eur J Med Chem. 2013; 63: 484-500.
- 199Stępnicki P, Targowska-Duda KM, Martínez AL, et al. Discovery of novel arylpiperazine-based DA/5-HT modulators as potential antipsychotic agents – design, synthesis, structural studies and pharmacological profiling. Eur J Med Chem. 2023; 252:115285.
- 200Kaczor AA, Silva AG, Loza MI, Kolb P, Castro M, Poso A. Structure-based virtual screening for dopamine D2 receptor ligands as potential antipsychotics. ChemMedChem. 2016; 11(7): 718-729.
- 201Kaczor AA, Targowska-Duda KM, Stępnicki P, et al. N-(3-{4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}propyl)-1H-indazole-3-carboxamide (D2AAK3) as a potential antipsychotic: in vitro, in silico and in vivo evaluation of a multi-target ligand. Neurochem Int. 2021; 146:105016.
- 202Xiamuxi H, Wang Z, Li J, et al. Synthesis and biological investigation of tetrahydropyridopyrimidinone derivatives as potential multireceptor atypical antipsychotics. Bioorg Med Chem. 2017; 25(17): 4904-4916.
- 203Xu M, Wang Y, Yang F, et al. Synthesis and biological evaluation of a series of multi-target N-substituted cyclic imide derivatives with potential antipsychotic effect. Eur J Med Chem. 2018; 145: 74-85.
- 204Shi W, Wang Y, Wu C, et al. Synthesis and biological investigation of triazolopyridinone derivatives as potential multireceptor atypical antipsychotics. Bioorg Med Chem Lett. 2020; 30(8):127027.
- 205Tan X, Jiang X, He Y, et al. Automated design and optimization of multitarget schizophrenia drug candidates by deep learning. Eur J Med Chem. 2020; 204:112572.
- 206Yang F, Jiang X, Li J, et al. Synthesis, structure–activity relationships, and biological evaluation of a series of benzamides as potential multireceptor antipsychotics. Bioorg Med Chem Lett. 2016; 26(13): 3141-3147.
- 207Xu M, Wang Y, Yang F, et al. Synthesis and biological evaluation of a series of novel pyridinecarboxamides as potential multi-receptor antipsychotic drugs. Bioorg Med Chem Lett. 2018; 28(4): 606-611.
- 208Xu M, Guo S, Yang F, et al. Continuation of structure-activity relationship study of novel benzamide derivatives as potential antipsychotics. Arch Pharm. 2019; 352(4):e1800306.
- 209Wu C, Wang Y, Yang F, et al. Synthesis and biological evaluation of five-atom-linker-based arylpiperazine derivatives with an atypical antipsychotic profile. ChemMedChem. 2019; 14(24): 2042-2051.
- 210Zaręba P, Drabczyk AK, Jaśkowska J, Satała G. Chemical puzzles in the search for new, flexible derivatives of lurasidone as antipsychotic drugs. Bioorg Med Chem. 2020; 28(10):115459.
- 211Herold F, Chodkowski A, Izbicki Ł, et al. Novel 4-aryl-pyrido[1,2-c]pyrimidines with dual SSRI and 5-HT1A activity. part 3. Eur J Med Chem. 2011; 46(1): 142-149.
- 212Chodkowski A, Wróbel MZ, Turło J, et al. Novel 4-aryl-pyrido[1,2-c]pyrimidines with dual SSRI and 5-HT1A activity. Part 4. Eur J Med Chem. 2015; 90: 21-32.
- 213Król M, Ślifirski G, Kleps J, et al. Synthesis of novel pyrido[1,2-c]pyrimidine derivatives with 6-fluoro-3-(4-piperidynyl)-1,2-benzisoxazole moiety as potential SSRI and 5-HT1A receptor ligands. Int J Mol Sci. 2021; 22(5): 2329.
- 214Chen Y, Lan Y, Cao X, et al. Synthesis and evaluation of amide, sulfonamide and urea–benzisoxazole derivatives as potential atypical antipsychotics. Med Chem Comm. 2015; 6(5): 831-838.
- 215Cao X, Zhang Y, Chen Y, et al. Synthesis and biological evaluation of fused tricyclic heterocycle piperazine (piperidine) derivatives as potential multireceptor atypical antipsychotics. J Med Chem. 2018; 61(22): 10017-10039.
- 216Gao L, Hao C, Chen J, et al. Discovery of a new class of multi-target heterocycle piperidine derivatives as potential antipsychotics with pro-cognitive effect. Bioorg Med Chem Lett. 2021; 40:127909.
- 217Gao L, Yang Z, Xiong J, et al. Design, synthesis and biological investigation of flavone derivatives as potential multi-receptor atypical antipsychotics. Molecules. 2020; 25(18): 4107.
- 218Jin J, Zhang K, Dou F, et al. Isoquinolinone derivatives as potent CNS multi-receptor D2/5-HT1A/5-HT2A/5-HT6/5-HT7 agents: synthesis and pharmacological evaluation. Eur J Med Chem. 2020; 207:112709.
- 219Huang L, Gao L, Zhang X, et al. Synthesis and pharmacological evaluation of piperidine (piperazine)-amide substituted derivatives as multi-target antipsychotics. Bioorg Med Chem Lett. 2020; 30(20):127506.
- 220Chen Y, Xu X, Liu X, Liu BF, Zhang G. Synthesis and evaluation of a series of piperidine-2, 6-dione-piperazine (piperidine) derivatives as multireceptor atypical antipsychotics. Arch Pharm. 2012; 345(11): 859-869.
- 221Raddatz R, Tao M, Hudkins R. Histamine H3 antagonists for treatment of cognitive deficits in CNS diseases. Curr Top Med Chem. 2010; 10(2): 153-169.
- 222Wróbel MZ, Chodkowski A, Herold F, et al. Synthesis and biological evaluation of new multi-target 3-(1H-indol-3-yl) pyrrolidine-2, 5-dione derivatives with potential antidepressant effect. Eur J Med Chem. 2019; 183:111736.
- 223Wróbel MZ, Chodkowski A, Dawidowski M, et al. Synthesis and biological evaluation of novel 3-(5-substituted-1H-indol-3-yl) pyrrolidine-2, 5-dione derivatives with a dual affinity for serotonin 5-HT1A receptor and SERT. Bioorg Chem. 2023; 141:106903.
- 224Bucki A, Marcinkowska M, Śniecikowska J, et al. Novel 3-(1, 2, 3, 6-tetrahydropyridin-4-yl)-1 H-indole-based multifunctional ligands with antipsychotic-like, mood-modulating, and procognitive activity. J Med Chem. 2017; 60(17): 7483-7501.
- 225Kaczor AA, Targowska-Duda KM, Budzyńska B, Biała G, Silva AG, Castro M. In vitro, molecular modeling and behavioral studies of 3-{[4-(5-methoxy-1H-indol-3-yl)-1,2,3,6-tetrahydropyridin-1-yl]methyl}-1,2-dihydroquinolin-2-one (D2AAK1) as a potential antipsychotic. Neurochem Int. 2016; 96: 84-99.
- 226Kondej M, Wróbel TM, Silva AG, et al. Synthesis, pharmacological and structural studies of 5-substituted-3-(1-arylmethyl-1, 2, 3, 6-tetrahydropyridin-4-yl)-1H-indoles as multi-target ligands of aminergic GPCRs. Eur J Med Chem. 2019; 180: 673-689.
- 227Kondej M, Wróbel TM, Targowska-Duda KM, et al. Multitarget derivatives of D2AAK1 as potential antipsychotics: the effect of substitution in the indole moiety. ChemMedChem. 2022; 17(15):e202200238.
- 228Xu J-W, Qi Y-L, Wu J-W, Yuan R-X, Chen X-W, Li J-Q. Synthesis and biological evaluation of novel antipsychotic trans-4-(2-(1, 2, 4, 5-tetrahydro-3H-benzo [d] azepin-3-yl) ethyl) cyclohexan-1-amine derivatives targeting dopamine/serotonin receptor subtypes. Bioorg Med Chem Lett. 2021; 31:127681.
- 229Chen X-W, Sun Y-Y, Fu L, Li J-Q. Synthesis and pharmacological characterization of novel N-(trans-4-(2-(4-(benzo [d] isothiazol-3-yl) piperazin-1-yl) ethyl) cyclohexyl) amides as potential multireceptor atypical antipsychotics. Eur J Med Chem. 2016; 123: 332-353.
- 230Del Bello F, Ambrosini D, Bonifazi A, et al. Multitarget 1,4-dioxane compounds combining favorable D2-like and 5-HT1A receptor interactions with potential for the treatment of Parkinson's disease or schizophrenia. ACS Chem Neurosci. 2019; 10(5): 2222-2228.
- 231Del Bello F, Giannella M, Giorgioni G, Piergentili A, Quaglia W. Receptor ligands as helping hands to L-DOPA in the treatment of Parkinson's disease. Biomolecules. 2019; 9(4): 142.
- 232Bonifazi A, Newman AH, Keck TM, et al. Scaffold hybridization strategy leads to the discovery of dopamine D3 receptor-selective or multitarget bitopic ligands potentially useful for central nervous system disorders. ACS Chem Neurosci. 2021; 12(19): 3638-3649.
- 233Lyketsos CG, Carrillo MC, Ryan JM, et al. Neuropsychiatric symptoms in Alzheimer's disease. Alzheimer's Dementia. 2011; 7(5): 532-539.
- 234Lee HB, Lyketsos CG. Depression in Alzheimer's disease: heterogeneity and related issues. Biol Psychiatry. 2003; 54(3): 353-362.
- 235Modrego PJ. Depression in Alzheimer's disease. Pathophysiology, diagnosis, and treatment. J Alzheimer's Dis. 2010; 21(4): 1077-1087.
- 236Li X, Wang H, Xu Y, et al. Novel vilazodone–tacrine hybrids as potential multitarget-directed ligands for the treatment of Alzheimer's disease accompanied with depression: design, synthesis, and biological evaluation. ACS Chem Neurosci. 2017; 8(12): 2708-2721.
- 237Liu W, Wang H, Li X, et al. Design, synthesis and evaluation of vilazodone-tacrine hybrids as multitarget-directed ligands against depression with cognitive impairment. Bioorg Med Chem. 2018; 26(12): 3117-3125.
- 238Frampton JE. Vilazodone: in major depressive disorder. CNS Drugs. 2011; 25: 615-627.
- 239Li X, Li J, Huang Y, et al. The novel therapeutic strategy of vilazodone-donepezil chimeras as potent triple-target ligands for the potential treatment of Alzheimer's disease with comorbid depression. Eur J Med Chem. 2022; 229:114045.
- 240Jankowska A, Satała G, Kołaczkowski M, et al. Novel anilide and benzylamide derivatives of arylpiperazinylalkanoic acids as 5-HT1A/5-HT7 receptor antagonists and phosphodiesterase 4/7 inhibitors with procognitive and antidepressant activity. Eur J Med Chem. 2020; 201:112437.
- 241Levigoureux E, Vidal B, Fieux S, et al. Serotonin 5-HT1A receptor biased agonists induce different cerebral metabolic responses: a [18F]-Fluorodesoxyglucose positron emission tomography study in conscious and anesthetized rats. ACS Chem Neurosci. 2018; 10(7): 3108-3119.
- 242Chaib S, Vidal B, Bouillot C, et al. Multimodal imaging study of the 5-HT1A receptor biased agonist, NLX-112, in a model of L-DOPA-induced dyskinesia. Neuroimage Clin. 2023; 39:103497.
- 243Lemoine L, Verdurand M, Vacher B, et al. 18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging. Eur J Nucl Med Mol Imaging. 2010; 37(3): 594-605.
- 244Vidal B, Fieux S, Colom M, et al. 18 F-F13640 preclinical evaluation in rodent, cat and primate as a 5-HT 1A receptor agonist for PET neuroimaging. Brain Struct Funct. 2018; 223: 2973-2988.
- 245Colom M, Vidal B, Fieux S, et al. 18F]F13640, a 5-HT1A receptor radiopharmaceutical sensitive to brain serotonin fluctuations. Front Neurosci. 2021; 15:622423.
- 246Colom M, Costes N, Redouté J, et al. 18F-F13640 PET imaging of functional receptors in humans. Eur J Nucl Med Mol Imaging. 2020; 47(1): 220-221.
- 247Courault P, Lancelot S, Costes N, et al. 18F]F13640: a selective agonist PET radiopharmaceutical for imaging functional 5-HT1A receptors in humans. Eur J Nucl Med Mol Imaging. 2023; 50(6): 1651-1664.
- 248Narayanaswami V, Tong J, Fiorino F, et al. Synthesis, in vitro and in vivo evaluation of 11C-O-methylated arylpiperazines as potential serotonin 1A (5-HT1A) receptor antagonist radiotracers. EJNMMI Radiopharm Chem. 2020; 5(1): 13.
- 249Dahl K, Johnström P, Forsberg-Morén A, et al. Synthesis and preclinical evaluation of [11C]AZ11895530 for PET imaging of the serotonin 1A receptor. ACS Chem Neurosci. 2022; 13(14): 2078-2083.
- 250Sandell J, Halldin C, Chou YH, Swahn CG, Thorberg SO, Farde L. PET-examination and metabolite evaluation in monkey of [(11)C]NAD-299, a radioligand for visualisation of the 5-HT(1A) receptor. Nucl Med Biol. 2002; 29(1): 39-45.
- 251Sandell J, Halldin C, Hall H, et al. Radiosynthesis and autoradiographic evaluation of [11C]NAD-299, a radioligand for visualization of the 5-HT1A receptor. Nucl Med Biol. 1999; 26(2): 159-164.
- 252Jha P, Chaturvedi S, Anju I, Kaul A, Jain N, Mishra AK. Acetylated benzothiazolone as homobivalent SPECT metallo-radiopharmaceutical (99m)Tc-(6-AcBTZ)(2)DTPA: design, synthesis, and preclinical evaluation for mapping 5-HT(1A/7) receptors. ACS Omega. 2019; 4(6): 10044-10055.
- 253Kumari N, Kaul A, Varshney R, et al. Synthesis and evaluation of technetium-99m labelled 1-(2-methoxyphenyl)piperazine derivative for single photon emission computed tomography imaging for targeting 5-HT(1A). Bioorg Chem. 2021; 111:104972.
- 254Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev. 2019; 119(2): 957-1057.
- 255Caravan P, Farrar CT, Frullano L, Uppal R. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol Imaging. 2009; 4(2): 89-100.
- 256Anju A, Chaturvedi S, Chaudhary V, et al. 5-HT(1A) targeting PARCEST agent DO3AM-MPP with potential for receptor imaging: synthesis, physico-chemical and MR studies. Bioorg Chem. 2021; 106:104487.
- 257Soave M, Briddon SJ, Hill SJ, Stoddart LA. Fluorescent ligands: bringing light to emerging GPCR paradigms. Br J Pharmacol. 2020; 177(5): 978-991.
- 258Sarkar P, Harikumar KG, Rawat SS, Das S, Chakraborty TK, Chattopadhyay A. Environment-sensitive fluorescence of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled ligands for serotonin receptors. Molecules. 2021; 26(13): 3848.
- 259Bakthavachalam V, Baindur N, Madras BK, Neumeyer JL. Fluorescent probes for dopamine receptors: synthesis and characterization of fluorescein and 7-nitrobenz-2-oxa-1,3-diazol-4-yl conjugates of D-1 and D-2 receptor ligands. J Med Chem. 1991; 34(11): 3235-3241.
- 260Archer S, Medzihradsky F, Seyed-Mozaffari A, Emmerson PJ. Synthesis and characterization of 7-nitrobenzo-2-oxa-1,3-diazole (NBD)-labeled fluorescent opioids. Biochem Pharmacol. 1992; 43(2): 301-306.
- 261Jacobson KA, Ukena D, Padgett W, Kirk KL, Daly JW. Molecular probes for extracellular adenosine receptors. Biochem Pharmacol. 1987; 36(10): 1697-1707.
- 262Jürss R, Prinz H, Maelicke A. NBD-5-acylcholine: fluorescent analog of acetylcholine and agonist at the neuromuscular junction. Proc Natl Acad Sci USA. 1979; 76(3): 1064-1068.
- 263Garvey RW, Lacivita E, Niso M, Duszyńska B, Harris PE, Leopoldo M. Design, synthesis, and characterization of a novel fluoroprobe for live human islet cell imaging of serotonin 5-HT(1A) receptor. ChemMedChem. 2022; 17(10):e202100759.
- 264Kubitschke M, Müller M, Wallhorn L, et al. Next generation genetically encoded fluorescent sensors for serotonin. Nat Commun. 2022; 13(1): 7525.
- 265Luscher B, Maguire JL, Rudolph U, Sibille E. GABA(A) receptors as targets for treating affective and cognitive symptoms of depression. Trends Pharmacol Sci. 2023; 44(9): 586-600.
- 266Nguyen ATN, Nguyen DTN, Koh HY, et al. The application of artificial intelligence to accelerate G protein-coupled receptor drug discovery. Br J Pharmacol. 2023. doi:10.1111/bph.16140