Polystyrene Brush Evolution by Grafting to Reaction on Deglazed and Not-Deglazed Silicon Substrates
Chiara Ivaldi
Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, P.zza S. Eusebio 5, Vercelli, 13100 Italy
Search for more papers by this authorViviana Maria Ospina Guarin
Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121 Italy
Search for more papers by this authorDiego Antonioli
Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121 Italy
Search for more papers by this authorGiampaolo Zuccheri
Department of Pharmacy and Biotechnology and Interdepartmental Center for Industrial Research on Health Sciences & Technologies, University of Bologna, V. San Donato 19/2, Bologna, 40127 Italy
Search for more papers by this authorKatia Sparnacci
Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121 Italy
Search for more papers by this authorValentina Gianotti
Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, P.zza S. Eusebio 5, Vercelli, 13100 Italy
Search for more papers by this authorMichele Perego
Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), Via C. Olivetti 2, Agrate-Brianza, 20864 Italy
Search for more papers by this authorCorresponding Author
Riccardo Chiarcos
Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121 Italy
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Michele Laus
Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121 Italy
E-mail: [email protected]; [email protected]
Search for more papers by this authorChiara Ivaldi
Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, P.zza S. Eusebio 5, Vercelli, 13100 Italy
Search for more papers by this authorViviana Maria Ospina Guarin
Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121 Italy
Search for more papers by this authorDiego Antonioli
Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121 Italy
Search for more papers by this authorGiampaolo Zuccheri
Department of Pharmacy and Biotechnology and Interdepartmental Center for Industrial Research on Health Sciences & Technologies, University of Bologna, V. San Donato 19/2, Bologna, 40127 Italy
Search for more papers by this authorKatia Sparnacci
Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121 Italy
Search for more papers by this authorValentina Gianotti
Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, P.zza S. Eusebio 5, Vercelli, 13100 Italy
Search for more papers by this authorMichele Perego
Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), Via C. Olivetti 2, Agrate-Brianza, 20864 Italy
Search for more papers by this authorCorresponding Author
Riccardo Chiarcos
Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121 Italy
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Michele Laus
Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121 Italy
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Two model substrates for the grafting to reaction are considered: not-deglazed silicon, whose surface is coated by a thin oxide layer with reactive silanol groups on its surface; and deglazed silicon, where the oxide layer is removed by treatment with hydrofluoric acid. The reactive polymers are hydroxy-terminated polystyrenes with molecular weights ranging from 3.9 to 13.9 kg mol⁻1. The grafting to reaction is carried out at different temperatures and for different periods of time on the two different substrates. The thickness and the thermal stability of the resulting brushes are evaluated. Furthermore, the grafting of a highly dispersed system is simulated by blending two polymers with different molecular weights. Although the brush thickness growth is found to be faster on deglazed silicon, the preferential grafting of short chains occurs with equal chain selection propensity on both substrates.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202400288-sup-0001-SuppMat.docx177.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Zdyrko, I. Luzinov, Macromol. Rapid Commun. 2011, 32, 859.
- 2A. S. Goldmann, N. R. B. Boase, L. Michalek, J. P. Blinco, A. Welle, C. Barner-Kowollik, Adv. Mater. 2019, 31, 1902665.
- 3S. Ham, C. Shin, E. Kim, D. Y. Ryu, U. Jeong, T. P. Russell, C. J. Hawker, Macromolecules 2008, 41, 6431.
- 4E. Han, K. O. Stuen, Y. H. La, P. F. Nealey, P. Gopalan, Macromolecules 2008, 41, 9090.
- 5E. Han, K. O. Stuen, M. Leolukman, C. C. Liu, P. F. Nealey, P. Gopalan, Macromolecules 2009, 42, 4896.
- 6F. Ferrarese Lupi, T. J. Giammaria, F. G. Volpe, F. Lotto, G. Seguini, B. Pivac, M. Laus, M. Perego, ACS Appl. Mater. Interfaces 2014, 6, 21389.
- 7M. Welch, A. Rastogi, C. Ober, Soft Matter 2011, 7, 297.
- 8L. Li, S. Chen, J. Zheng, B. D. Ratner, S. Jiang, J. Phys. Chem. B 2005, 109, 2934.
- 9W. L. Chen, R. Cordero, H. Tran, C. K. Ober, Macromolecules 2017, 50, 4089.
- 10M. Kim, S. K. Schmitt, J. W. Choi, J. D. Krutty, P. Gopalan, Polymers 2015, 7, 1346.
- 11R. Chiarcos, M. Perego, M. Laus, Macromol. Chem. Phys. 2023, 224, 2200400.
- 12L. Michalek, L. Barner, C. Barner-Kowollik, Adv. Mater. 2018, 30, 1706321.
- 13M. Perego, G. Seguini, E. Arduca, A. Nomellini, K. Sparnacci, D. Antonioli, V. Gianotti M Laus, ACS Nano 2018, 12, 178.
- 14A. Pulici, S. Kuschlan, G. Seguini, F. Taglietti, M. Fanciulli, R. Chiarcos, M. Laus, M. Perego, Mater. Sci. Semicond. Process. 2023, 163, 107548.
- 15R. Chiarcos, M. Laus, M. Perego, Eur. Polym. J. 2024, 208, 112849.
- 16R. Chiarcos, V. Gianotti, M. Cossi, A. Zoccante, D. Antonioli, K. Sparnacci, M. Laus, F. E. Caligiore, M. Perego, ACS Appl. Electron. Mater. 2019, 1, 1807.
- 17V. M. Ospina, R. Chiarcos, D. Antonioli, V. Gianotti, M. Laus, S. Kuschlan, C. Wiemer M Perego, ACS Appl. Electron. Mater. 2022, 4, 6029.
- 18K. Sparnacci, D. Antonioli, V. Gianotti, M. Laus, F. F. Lupi, T. J. Giammaria, G. Seguini, M. Perego, ACS Appl. Mater. Interfaces 2015, 7, 10944.
- 19L. J. Norton, V. Smigolova, M. U. Pralle, A. Hubenko, K. H. Dai, E. J. Kramer, S. Hahn, C. Berglund, B. Dekoven, Macromolecules 1995, 28, 1999.
- 20G. Reiter, P. Auroy, L. Auvray, Macromolecules 1996, 29, 2150.
- 21P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, Science 1997, 275, 1458.
- 22K. Viswanathan, T. E. Long, T. C. Ward, J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 3655.
- 23M. Laus, R. Chiarcos, V. Gianotti, D. Antonioli, K. Sparnacci, G. Munaò, G. Milano, A. De Nicola, M. Perego, Macromolecules 2021, 54, 499.
- 24L. Wan, R. Ruiz, H. Gao, T. R. Albrecht, ACS Nano 2017, 11, 7666.
- 25C. Brondi, A. Baldanza, R. Chiarcos, M. Laus, G. Scherillo, G. Mensitieri, G. Milano, Polymer 2024, 294, 126737.
- 26R. Chiarcos, D. Antonioli, V. Ospina, M. Laus, M. Perego, V. Gianotti, Analyst 2021, 146, 6145.
- 27D. Antonioli, R. Chiarcos, V. Gianotti, M. Terragno, M. Laus, G. Munaò, G. Milano, A. De Nicola, M. Perego, Polym. Chem. 2021, 12, 6538.
- 28R. Chiarcos, D. Antonioli, V. Gianotti, M. Laus, G. Munaò, G. Milano, A. De Nicola, M. Perego, Polym. Chem. 2022, 13, 3904.
- 29L. Michalek, K. Mundsinger, C. Barner-Kowollik, L. Barner, Polym. Chem. 2019, 10, 54.
- 30L. Michalek, K. Mundsinger, L. Barner, C. Barner-Kowollik, ACS Macro Lett. 2019, 8, 800.
- 31B. J. Kim, G. H. Fredrickson, E. J. Kramer, Macromolecules 2007, 40, 3686.
- 32P. Thissen, O. Seitz, Y. J. Chabal, Prog. Surf. Sci. 2012, 87, 272.
- 33R. Boukherroub, S. Morin, P. Sharpe, D. D. M. Wayner, Langmuir 2000, 16, 7429.
- 34D. J. Michalak, S. R. Amy, A. Estève, Y. J. Chabal, J. Phys. Chem. C 2008, 112, 11907.
- 35J. E. Bateman, R. D. Eagling, B. R. Horrocks, A. Houlton, J. Phys. Chem. B 2000, 104, 5557.
- 36D. J. Michalak, S. Rivillon, Y. J. Chabal, A. Estève, N. S. Lewis, J. Phys. Chem. B 2006, 110, 20426.
- 37R. C. Longo, K. Cho, W. G. Schmidt, Y. J. Chabal, P. Thissen, Adv. Funct. Mater. 2013, 23, 3471.
- 38G. Barin, G. Seguini, R. Chiarcos, V. M. Ospina, M. Laus, C. Lenardi, M. Perego, Mater. Sci. Semicond. Process. 2023, 165, 107691.
- 39E. J. Kramer, Isr. J. Chem. 1995, 35, 49.
- 40F. Ferrarese Lupi, T. J. Giammaria, G. Seguini, M. Ceresoli, M. Perego, D. Antonioli, V. Gianotti, K. Sparnacci, M. Laus, J. Mater. Chem. C 2014, 2, 4909.
- 41I. Luzinov, D. Julthongpiput, H. Malz, J. Pionteck, V. V. Tsukruk, Macromolecules 2000, 33, 1043.
- 42K. S. Iyer, B. Zdyrko, H. Malz, J. Pionteck, I. Luzinov, Macromolecules 2003, 36, 6519.
- 43Y. Fujii, Z. Yang, J. Leach, H. Atarashi, K. Tanaka, O. K. C. Tsui, Macromolecules 2009, 42, 7418.
- 44V. Gianotti, D. Antonioli, K. Sparnacci, M. Laus, T. J. Giammaria, M. Ceresoli, F. Ferrarese Lupi, G. Seguini, M. Perego, J. Chromatogr. A 2014, 1368, 204.
- 45M. Asai, D. Zhao, S. K. Kumar, ACS Nano 2017, 11, 7028.