B─N Covalent Bond-Based Nonfullerene Electron Acceptors for Efficient Organic Solar Cells
Zhengwei Hu
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorJuxuan Xie
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorJiangkai Yu
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYi Zhang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorHouji Cai
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYuanqing Bai
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorKai Zhang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Chunchen Liu
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Fei Huang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorYong Cao
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorZhengwei Hu
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorJuxuan Xie
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorJiangkai Yu
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYi Zhang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorHouji Cai
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYuanqing Bai
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorKai Zhang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Chunchen Liu
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Fei Huang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorYong Cao
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorAbstract
The optoelectronic properties and photovoltaic performance of nonfullerene electron acceptors (NFEAs) in organic solar cells (OSCs) are greatly influenced by the rational structure regulation of the central core unit. This study introduces a novel type of six-membered fused electron-donating core containing B─N covalent bonds to construct acceptor–donor–acceptor (A–D–A)-type NFEAs. By modulating the branching alkyl chains on the nitrogen atom, two NFEAs, BN910 and BN1014, are synthesized and characterized. Both molecules exhibit strong near-infrared absorption, narrow bandgaps (≈1.45 eV), appropriate energy levels, and tunable molecular packing behaviors, positioning them as promising candidates for efficient NFEAs in OSCs. The investigation reveals that BN1014, with longer and C2-branched alkyl chains, demonstrates superior intermolecular packing and morphology within active layers, leading to enhanced exciton dissociation, improved charge transfer, and reduced charge recombination in OSCs. As a result, a power conversion efficiency (PCE) of 10.02% is achieved for D18:BN1014-based binary OSCs. Notably, BN1014 can be utilized as the third component in the D18:DT-Y6 binary system to fabricate the ternary OSCs, and a PCE of 17.65% is achieved, outperforming 17.05% of D18:DT-Y6-based binary OSCs. These findings highlight the potential of heteroarenes featuring B─N covalent bonds for constructing high-efficiency NFEAs in OSCs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
marc202300381-sup-0001-SuppMat.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
- 2G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 2018, 118, 3447.
- 3C. L. Chochos, M. Spanos, A. Katsouras, E. Tatsi, S. Drakopoulou, V. G. Gregoriou, A. Avgeropoulos, Prog. Polym. Sci. 2019, 91, 51.
- 4Z. Hu, J. Wang, X. Ma, J. Gao, C. Xu, K. Yang, Z. Wang, J. Zhang, F. Zhang, Nano Energy 2020, 78, 105376.
- 5D. Xie, Y. Zhang, X. Yuan, Y. Li, F. Huang, Y. Cao, C. Duan, Adv. Funct. Mater. 2023, 33, 2212601.
- 6Y. Liang, D. Zhang, Z. Wu, T. Jia, L. Lüer, H. Tang, L. Hong, J. Zhang, K. Zhang, C. J. Brabec, N. Li, F. Huang, Nat. Energy 2022, 7, 1180.
- 7S. Dong, T. Jia, K. Zhang, J. Jing, F. Huang, Joule 2020, 4, 2004.
- 8J. Wang, Y. Gao, L. Yang, X. Yin, L. Zhang, S. Wang, Z. Xie, J. Liu, L. Wang, J. Mater. Chem. C 2022, 10, 10860.
- 9Y. Liu, B. Liu, C.-Q. Ma, F. Huang, G. Feng, H. Chen, J. Hou, L. Yan, Q. Wei, Q. Luo, Q. Bao, W. Ma, W. Liu, W. Li, X. Wan, X. Hu, Y. Han, Y. Li, Y. Zhou, Y. Zou, Y. Chen, Y. Li, Y. Chen, Z. Tang, Z. Hu, Z.-G. Zhang, Z. Bo, Sci. China: Chem. 2022, 65, 224.
- 10C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
- 11G. Zhang, F. R. Lin, F. Qi, T. Heumüller, A. Distler, H.-J. Egelhaaf, N. Li, P. C. Y. Chow, C. J. Brabec, A. K.-Y. Jen, H.-L. Yip, Chem. Rev. 2022, 122, 14180.
- 12B. Yin, S. Pang, Z. Chen, W. Deng, Z. Liu, C. Duan, F. Huang, Y. Cao, Energy Environ. Sci. 2022, 15, 4789.
- 13C. Liu, Y. Bai, Z. Hu, F. Huang, Zhongguo Kexue: Huaxue 2022, 52, 1948.
- 14C. Zhang, A. O. Song, Q. Huang, Y. Cao, Z. Zhong, Y. Liang, K. Zhang, C. Liu, F. Huang, Y. Cao, Nano-Micro Lett. 2023, 15, 140.
- 15Y. Liu, B. Liu, C.-Q. Ma, F. Huang, G. Feng, H. Chen, J. Hou, L. Yan, Q. Wei, Q. Luo, Q. Bao, W. Ma, W. Liu, W. Li, X. Wan, X. Hu, Y. Han, Y. Li, Y. Zhou, Y. Zou, Y. Chen, Y. Liu, L. Meng, Y. Li, Y. Chen, Z. Tang, Z. Hu, Z.-G. Zhang, Z. Bo, Sci. China: Chem. 2022, 65, 1457.
- 16P. Bi, S. Zhang, Z. Chen, Y. Xu, Y. Cui, T. Zhang, J. Ren, J. Qin, L. Hong, X. Hao, J. Hou, Joule 2021, 5, 2408.
- 17Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei, J. Hou, Adv. Mater. 2021, 33, 2102420.
- 18L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C.-C. Chen, R. C. I. Mackenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mater. 2022, 21, 656.
- 19Y. Wei, Z. Chen, G. Lu, N. Yu, C. Li, J. Gao, X. Gu, X. Hao, G. Lu, Z. Tang, J. Zhang, Z. Wei, X. Zhang, H. Huang, Adv. Mater. 2022, 34, 2204718.
- 20L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, L. Yu, Chem. Rev. 2015, 115, 12666.
- 21J. Wang, X. Zhan, Acc. Chem. Res. 2021, 54, 132.
- 22F. Gao, Joule 2019, 3, 908.
- 23A. Armin, W. Li, O. J. Sandberg, Z. Xiao, L. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoaee, T. Wang, H. Ade, T. Heumüller, C. Brabec, P. Meredith, Adv. Energy Mater. 2021, 11, 2003570.
- 24S. Chen, L. Feng, T. Jia, J. Jing, Z. Hu, K. Zhang, F. Huang, Sci. China: Chem. 2021, 64, 1192.
- 25S. Chen, L. Hong, M. Dong, W. Deng, L. Shao, Y. Bai, K. Zhang, C. Liu, H. Wu, F. Huang, Angew. Chem., Int. Ed. 2023, 62, 202213869.
- 26A. Markina, K.-H. Lin, W. Liu, C. Poelking, Y. Firdaus, D. R. Villalva, J. I. Khan, S. H. K. Paleti, G. T. Harrison, J. Gorenflot, W. Zhang, S. De Wolf, I. Mcculloch, T. D. Anthopoulos, D. Baran, F. Laquai, D. Andrienko, Adv. Energy Mater. 2021, 11, 2102363.
- 27S. Ma, H. Feng, X. Liu, Z. Hu, X. Yang, Y. Liang, J. Zhang, F. Huang, Y. Cao, ChemSusChem 2021, 14, 3544.
- 28J. Hou, O. Inganäs, R. H. Friend, F. Gao, Nat. Mater. 2018, 17, 119.
- 29X. Zhu, S. Liu, Q. Yue, W. Liu, S. Sun, S. Xu, CCS Chem. 2021, 3, 1070.
- 30H. Feng, X. Song, Z. Zhang, R. Geng, J. Yu, L. Yang, D. Baran, W. Tang, Adv. Funct. Mater. 2019, 29, 1903269.
- 31Y. Ma, M. Zhang, S. Wan, P. Yin, P. Wang, D. Cai, F. Liu, Q. Zheng, Joule 2021, 5, 197.
- 32Y. Hu, L. Li, X. Wang, D. Ma, F. Huang, Chin. Chem. Lett. 2021, 32, 1017.
- 33L. Shao, L. Hong, Y. Cao, H. Tang, Y. Huang, X. Xia, Y. Bai, M. Dong, X. Zhang, X. Lu, X. Yang, C. Liu, F. Huang, Y. Cao, Adv. Opt. Mater. 2023, 11, 2202823.
- 34W. Jiang, Y. Li, Z. Wang, Chem. Soc. Rev. 2013, 42, 6113.
- 35S. N. Afraj, C.-C. Lin, A. Velusamy, C.-H. Cho, H.-Y. Liu, J. Chen, G.-H. Lee, J.-C. Fu, J.-S. Ni, S.-H. Tung, S. Yau, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Funct. Mater. 2022, 32, 2200880.
- 36J. Cameron, A. L. Kanibolotsky, P. J. Skabara, Adv. Mater. 2023, 2302259.
10.1002/adma.202302259 Google Scholar
- 37Z.-M. Zhong, F. Peng, L. Ying, Z.-Q. Huang, W.-K. Zhong, G. Yu, Y. Cao, F. Huang, Chin. J. Polym. Sci. 2023, https://doi.org/10.1007/s10118.
10.1007/s10118 Google Scholar
- 38S. Chen, M. Dong, Y. Bai, Y. Chen, Y. Fu, L. Shao, X. Lu, C. Liu, K. Zhang, H. Wu, F. Huang, J. Mater. Chem. A 2023, 11, 3653.
- 39C. R. Mcconnell, S.-Y. Liu, Chem. Soc. Rev. 2019, 48, 3436.
- 40F.-D. Zhuang, Z.-H. Sun, Z.-F. Yao, Q.-R. Chen, Z. Huang, J.-H. Yang, J.-Y. Wang, J. Pei, Angew. Chem., Int. Ed. 2019, 58, 10708.
- 41P. Qiang, Z. Sun, M. Wan, X. Wang, P. Thiruvengadam, C. Bingi, W. Wei, W. Zhu, D. Wu, F. Zhang, Org. Lett. 2019, 21, 4575.
- 42T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777.
- 43Y.-H. He, F.-M. Xie, H.-Z. Li, K. Zhang, Y. Shen, F. Ding, C.-Y. Wang, Y.-Q. Li, J.-X. Tang, Mater. Chem. Front. 2023, 7, 2454.
- 44C.-Z. Du, Y. Lv, H. Dai, X. Hong, J. Zhou, J.-K. Li, R.-R. Gao, D. Zhang, L. Duan, X.-Y. Wang, J. Mater. Chem. C 2023, 11, 2469.
- 45C. Dou, J. Liu, L. Wang, Sci. China: Chem. 2017, 60, 450.
- 46M. M. Morgan, M. Nazari, T. Pickl, J. M. Rautiainen, H. M. Tuononen, W. E. Piers, G. C. Welch, B. S. Gelfand, Chem. Commun. 2019, 55, 11095.
- 47C. Duan, G. Zango, M. García Iglesias, F. J. M. Colberts, M. M. Wienk, M. V. Martínez-Díaz, R. A. J. Janssen, T. Torres, Angew. Chem., Int. Ed. 2017, 56, 148.
- 48R. G. Brandt, S. G. Sveegaard, M. Xiao, W. Yue, Z. Du, M. Qiu, D. Angmo, T. R. Andersen, F. C. Krebs, R. Yang, D. Yu, J. Mater. Chem. C 2016, 4, 4393.
- 49W. Li, C.-Z. Du, X.-Y. Chen, L. Fu, R.-R. Gao, Z.-F. Yao, J.-Y. Wang, W. Hu, J. Pei, X.-Y. Wang, Angew. Chem., Int. Ed. 2022, 61, 202201464.
- 50S. Pang, Z. Wang, X. Yuan, L. Pan, W. Deng, H. Tang, H. Wu, S. Chen, C. Duan, F. Huang, Y. Cao, Angew. Chem., Int. Ed. 2021, 60, 8813.
- 51X. Liu, S. Pang, L. Zeng, W. Deng, M. Yang, X. Yuan, J. Li, C. Duan, F. Huang, Y. Cao, Chem. Commun. 2022, 58, 8686.
- 52W.-L. Liau, Y.-J. Su, H.-F. Tseng, J.-T. Chen, C.-S. Hsu, Liq. Cryst. 2017, 44, 557.
- 53V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, P. W. M. Blom, Phys. Rev. Lett. 2004, 93, 216601.
- 54L. J. A. Koster, V. D. Mihailetchi, H. Xie, P. W. M. Blom, Appl. Phys. Lett. 2005, 87, 203502.
- 55G. A. H. Wetzelaer, M. Kuik, M. Lenes, P. W. M. Blom, Appl. Phys. Lett. 2011, 99, 153506.
- 56S. Kouijzer, J. J. Michels, M. Van Den Berg, V. S. Gevaerts, M. Turbiez, M. M. Wienk, R. A. J. Janssen, J. Am. Chem. Soc. 2013, 135, 12057.
- 57Q. Wang, Z. Hu, Z. Wu, Y. Lin, L. Zhang, L. Liu, Y. Ma, Y. Cao, J. Chen, ACS Appl. Mater. Interfaces 2020, 12, 4659.