Self-Assembly and In Situ Quaternization of Triblock Bottlebrush Block Copolymers via Organized Spontaneous Emulsification for Effective Loading of DNA
Zhaoxu Wang
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorQiujun Liu
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorQian Liu
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorHao Qi
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Yuesheng Li
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dong-Po Song
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhaoxu Wang
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorQiujun Liu
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorQian Liu
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorHao Qi
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Yuesheng Li
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dong-Po Song
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Microspheres bearing large pores are useful in the capture and separation of biomolecules. However, pore size is typically poorly controlled, leading to disordered porous structures with limited performances. Herein, ordered porous spheres with a layer of cations on the internal surface of the nanopores are facilely fabricated in a single step for effective loading of DNA bearing negative charges. Triblock bottlebrush copolymers (BBCPs), (polynorbornene-g-polystyrene)-b-(polynorbornene-g-polyethylene oxide)-b-(polynorbornene-g-bromoethane) (PNPS-b-PNPEO-b-PNBr), are designed and synthesized for fabrication of the positively charged porous spheres through self-assembly and in situ quaternization during an organized spontaneous emulsification (OSE) process. Pore diameter as well as charge density increase with the increase of PNBr content, resulting in a significant increase of loading density from 4.79 to 22.5 ng µg−1 within the spheres. This work provides a general strategy for efficient loading and encapsulation of DNA, which may be extended to a variety of different areas for different real applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
marc202300192-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. T. Allen, E. J. P. Fox, I. Blute, Z. D. Kelly, Y. Rochev, A. K. Keenan, K. A. Dawson, W. M. Gallagher, Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 6331.
- 2J. M. Grolman, P. Weinand, D. J. Mooney, Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 25999.
- 3R. Kumar, C. F. Santa Chalarca, M. R. Bockman, C. V. Bruggen, C. J. Grimme, R. J. Dalal, M. G. Hanson, J. K. Hexum, T. M. Reineke, Chem. Rev. 2021, 121, 11527.
- 4U. Lächelt, E. Wagner, Chem. Rev. 2015, 115, 11043.
- 5T. A. Tockary, W. Foo, A. Dirisala, Q. Chen, S. Uchida, S. Osawa, Y. Mochida, X. Liu, H. Kinoh, H. Cabral, K. Osada, K. Kataoka, ACS Nano 2019, 13, 12732.
- 6J. H. McCutchan, J. S. Pagano, J. Natl. Cancer Inst. 1968, 41, 351.
- 7B. Guo, B.o Wen, W. Cheng, X. Zhou, X. Duan, M. Zhao, Q. Xia, S. Ding, Biosens. Bioelectron. 2018, 112, 120.
- 8M. Balwani, E. Sardh, P. Ventura, P. A. Peiró, D. C. Rees, U. Stölzel, D. M. Bissell, H. L. Bonkovsky, J. Windyga, K. E. Anderson, C. Parker, S. M. Silver, S. B. Keel, J. D. Wang, P. E. Stein, P. Harper, D. Vassiliou, B. Wang, J. Phillips, A. Ivanova, J. G. Langendonk, R. Kauppinen, E. Minder, Y. Horie, C. Penz, J. Chen, S. Liu, J. J. Ko, M. T. Sweetser, P. Garg, N. Engl. J. Med. 2020, 382, 2289.
- 9H. P. N. Scholl, J. A. Sahel, Lancet 2014, 383, 1105.
- 10L. Buscail, B. Bournet, F. Vernejoul, G. Cambois, H. Lulka, N. Hanoun, M. Dufresne, A. Meulle, A. Vignolle-Vidoni, L. Ligat, N. Saint-Laurent, F. Pont, S. Dejean, M. Gayral, F. Martins, J. Torrisani, O. Barbey, F. Gross, R. Guimbaud, P. Otal, F. Lopez, G. Tiraby, P. Cordelier, Mol. Ther. 2015, 23, 779.
- 11C. Li, R. J. Samulski, Nat. Rev. Genet. 2020, 21, 255.
- 12H. J. Vaughan, C. G. Zamboni, L. F. Hassan, N. P. Radant, D. Jacob, R. C. Mease, I. Minn, S. Y. Tzeng, K. L. Gabrielson, P. Bhardwaj, X. Guo, D. Francisco, M. G. Pomper, J. J. Green, Sci. Adv. 2022, 8, eabo6406.
- 13M. Rosa, R. Dias, M. D. Miguel, B. Lindman, Biomacromolecules 2005, 6, 2164.
- 14Y. H. Kim, K. Lee, S. Li, Chem. Mater. 2021, 33, 7923.
- 15Y. Jiang, T. P. Lodge, T. M. Reineke, J. Am. Chem. Soc. 2018, 140, 11101.
- 16Z. Tan, Y. Jiang, W. Zhang, L. Karls, T. P. Lodge, T. M. Reineke, J. Am. Chem. Soc. 2019, 141, 15804.
- 17C. J. Grimme, M. G. Hanson, L. G. Corcoran, T. M. Reineke, Biomacromolecules 2022, 23, 3257.
- 18S. Jung, T. P. Lodge, T. M. Reineke, J. Phys. Chem. B 2018, 122, 2449.
- 19Y. Jiang, T. M. Reineke, T. P. Lodge, Macromolecules 2018, 51, 1150.
- 20Y. Jiang, D. Sprouse, J. E. Laaser, Y. Dhande, T. M. Reineke, T. P. Lodge, J. Phys. Chem. B 2017, 121, 6708.
- 21R. Kumar, N. Le, F. Oviedo, M. E. Brown, T. M. Reineke, JACS Au 2022, 2, 428.
- 22C. F. Santa Chalarca, R. J. Dalal, A. Chapa, M. G. Hanson, T. M. Reineke, ACS Macro Lett. 2022, 11, 588.
- 23N. P. Agarwal, M. Matthies, F. N. Gür, K. Osada, T. L. Schmidt, Angew. Chem., Int. Ed. 2017, 56, 5460.
- 24C. Hörtz, A. Birke, L. Kaps, S. Decker, E. Wächtersbach, K. Fischer, D. Schuppan, M. Barz, M. Schmidt, Macromolecules 2015, 48, 2074.
- 25R. J. Dalal, R. Kumar, M. Ohnsorg, M. Brown, T. M. Reineke, ACS Macro Lett. 2021, 10, 886.
- 26R. J. Dalal, M. L. Ohnsorg, S. Panda, T. M. Reineke, Biomacromolecules 2022, 23, 5179.
- 27S. Takano, Y. Miyashima, S. Fujii, K. Sakurai, Biomacromolecules 2023, 24, 1299.
- 28M. R. Talingting, U. Voigt, P. Munk, S. E. Webber, Macromolecules 2000, 33, 9612.
- 29M. Lueckheide, J. R. Vieregg, A. J. Bologna, L. Leon, M. V. Tirrell, Nano Lett. 2018, 18, 7111.
- 30K. Osada, Polymers 2020, 12, 1603.
- 31A. E. Marras, J. R. Vieregg, J. M. Ting, J. D. Rubien, M. V. Tirrell, Polymers 2019, 11, 83.
- 32Y. Song, H. Bao, X. Shen, X. Li, X. Liang, S. Wang, Adv. Funct. Mater. 2022, 32, 2113153.
- 33B. Notario, J. Pinto, M. A. Rodriguez-Perez, Prog. Mater. Sci. 2016, 78-79, 93.
- 34J. Ugelstad, L. Söderberg, A. Berge, J. Bergström, Nature 1983, 303, 95.
- 35Y. Song, X. Dong, D. Shang, X. Zhang, X. Li, X. Liang, S. Wang, Small 2021, 17, e2102802.
- 36Y. Song, J. B. Fan, X. Li, X. Liang, S. Wang, Adv. Mater. 2019, 31, 1900391.
- 37X.u Cheng, Y. Yang, Y. Song, L. P. Xu, S. Wang, Langmuir 2022, 38, 4250.
- 38F. Liu, Y. Yang, X. Wan, H. Gao, Y. Wang, J. Lu, L. P. Xu, S. Wang, ACS Nano 2022, 16, 6266.
- 39H. Yu, X. Qiu, S. P. Nunes, K. V. Peinemann, Nat. Commun. 2014, 5, 4110.
- 40K. V. Peinemann, V. Abetz, P. F. W. Simon, Nat. Mater. 2007, 6, 992.
- 41X. Qiu, H. Yu, M. Karunakaran, N. Pradeep, S. P. Nunes, K. V. Peinemann, ACS Nano 2013, 7, 768.
- 42X. Chen, X. Yang, D. P. Song, Y. F. Men, Y. Li, Macromolecules 2021, 54, 3668.
- 43H. Gao, K. Matyjaszewski, J. Am. Chem. Soc. 2007, 129, 6633.
- 44Y. Gai, D.-P. Song, B. M. Yavitt, J. J. Watkins, Macromolecules 2017, 50, 1503.
- 45M. Xu, Y.u Wang, F. Yang, C. Wu, Z. Wang, B. Ye, X. Jiang, Q. Zhao, J. Li, Y. Liu, J. Zhang, G. Tian, Y. He, J. Shen, H. Jiang, Eur. J. Med. Chem. 2018, 145, 74.
- 46X. L. Wang, N. Y. Chiang, J. J. Peng, L. Yu, L. J. Xu, H. R. Yang, B. Y. Jin, P. Zhang, Y. Y. Lai, Z. Li, G. Q. Lai, T. Y. Luh, J. Org. Chem. 2021, 86, 17629.
- 47Y. Xia, B. D. Olsen, J. A. Kornfield, R. H. Grubbs, J. Am. Chem. Soc. 2009, 131, 18525.
- 48Y. Xia, J. A. Kornfield, R. H. Grubbs, Macromolecules 2009, 42, 3761.
- 49F. Zhang, H. Zhang, C. Qu, J. Phys. Chem. B 2012, 116, 9016.
- 50M. Lehmann, D. Leonard, J. Zheng, L. He, X. Tang, X. C. Chen, K. H. Lim, S. Maurya, Y. S. Kim, T. Saito, ACS Appl. Energy Mater. 2023, 6, 1822.
- 51O. V. Ovchinnikov, A. V. Evtukhova, T. S. Kondratenko, M. S. Smirnov, V. Y. Khokhlov, O. V. Erina, Vib. Spectrosc. 2016, 86, 181.
- 52K. Piechocki, M. Kozanecki, J. Saramak, Polymer 2020, 210.
- 53S. Kinoshita, S. Yoshioka, J. Miyazaki, Rep. Prog. Phys. 2008, 71, 076401.
- 54Y. L. Li, X.i Chen, H. K. Geng, Y. Dong, B. Wang, Z. Ma, L. Pan, G. Q. Ma, D. P. Song, Y. S. Li, Angew. Chem., Int. Ed. 2021, 60, 3647.
- 55Q. J. Liu, Y. Li, J. C. Xu, H. F. Lu, Y. Li, D. P. Song, ACS Nano 2021, 15, 5534.
- 56X. Chen, D. P. Song, Y. Li, Macromolecules 2022, 55, 7438.