Core–Shell Structured Polystyrene/BaTiO3 Hybrid Nanodielectrics Prepared by In Situ RAFT Polymerization: A Route to High Dielectric Constant and Low Loss Materials with Weak Frequency Dependence
Ke Yang
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
Search for more papers by this authorCorresponding Author
Xingyi Huang
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
IPS Research Center, Waseda University, Kitakyushu, Fukuoka, Japan
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.Search for more papers by this authorLiyuan Xie
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
Search for more papers by this authorChao Wu
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
Search for more papers by this authorCorresponding Author
Pingkai Jiang
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.Search for more papers by this authorToshikatsu Tanaka
IPS Research Center, Waseda University, Kitakyushu, Fukuoka, Japan
Search for more papers by this authorKe Yang
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
Search for more papers by this authorCorresponding Author
Xingyi Huang
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
IPS Research Center, Waseda University, Kitakyushu, Fukuoka, Japan
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.Search for more papers by this authorLiyuan Xie
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
Search for more papers by this authorChao Wu
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
Search for more papers by this authorCorresponding Author
Pingkai Jiang
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
Department of Polymer Science and Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.Search for more papers by this authorToshikatsu Tanaka
IPS Research Center, Waseda University, Kitakyushu, Fukuoka, Japan
Search for more papers by this authorAbstract
A novel route to prepare core–shell structured nanocomposites with excellent dielectric performance is reported. This approach involves the grafting of polystyrene (PS) from the surface of BaTiO3 by an in situ RAFT polymerization. The core–shell structured PS/BaTiO3 nanocomposites not only show significantly increased dielectric constant and very low dielectric loss, but also have a weak frequency dependence of dielectric properties over a wide range of frequencies. In addition, the dielectric constant of the nanocomposites can also be easily tuned by varying the thickness of the PS shell. Our method is very promising for preparing high-performance nanocomposites used in energy-storage devices.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
marc_201200361_sm_suppl.pdf180.4 KB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Q. M. Zhang, H. F. Li, M. Poh, F. Xia, Z. Y. Cheng, H. S. Xu, C. Huang, Nature 2002, 419, 284.
- 2 Y. Wang, X. Zhou, Q. Chen, B. J. Chu, Q. M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1036.
- 3 P. Brochu, Q. B. Pei, Macromol. Rapid Commun. 2010, 31, 10.
- 4 J. X. Lu, C. P. Wong, IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1322.
- 5 Q. Wang, L. Zhu, J. Polym. Sci.,PartB: Polym. Phys. 2011, 49, 1421.
- 6 Z. M. Dang, J. K. Yuan, J. W. Zha, T. Zhou, S. T. Li, G. H. Hu, Prog. Mater. Sci. 2012, 57, 660.
- 7 L. L. Sun, B. Li, Y. Zhao, G. Mitchell, W. H. Zhong, Nanotechnology 2010, 21.
- 8 Z. M. Dang, L. Wang, Y. Yin, Q. Zhang, Q. Q. Lei, Adv. Mater. 2007, 19, 852.
- 9 C. Yang, Y. H. Lin, C. W. Nan, Carbon 2009, 47, 1096.
- 10 F. He, S. Lau, H. L. Chan, J. T. Fan, Adv. Mater. 2009, 21, 710.
- 11 C. Wu, X. Y. Huang, L. Y. Xie, J. H. Yu, P. K. Jiang, J. Mater. Chem. 2011, 21, 17729.
- 12 C. C. Wang, J. F. Song, H. M. Bao, Q. D. Shen, C. Z. Yang, Adv. Funct. Mater. 2008, 18, 1299.
- 13 M. Molberg, D. Crespy, P. Rupper, F. Nuesch, J. A. E. Manson, C. Lowe, D. M. Opris, Adv. Funct. Mater. 2010, 20, 3280.
- 14 Y. Shen, Y. H. Lin, M. Li, C. W. Nan, Adv. Mater. 2007, 19, 1418.
- 15 Y. Shen, Y. H. Lin, C. W. Nan, Adv. Funct. Mater. 2007, 17, 2405.
- 16 Z. M. Dang, Y. H. Lin, C. W. Nan, Adv. Mater. 2003, 15, 1625.
- 17 Y. Bai, Z. Y. Cheng, V. Bharti, H. S. Xu, Q. M. Zhang, Appl. Phys. Lett. 2000, 76, 3804.
- 18 M. Arbatti, X. B. Shan, Z. Y. Cheng, Adv. Mater. 2007, 19, 1369.
- 19 Z. M. Dang, T. Zhou, S. H. Yao, J. K. Yuan, J. W. Zha, H. T. Song, J. Y. Li, Q. Chen, W. T. Yang, J. Bai, Adv. Mater. 2009, 21, 2077.
- 20 P. Kim, S. C. Jones, P. J. Hotchkiss, J. N. Haddock, B. Kippelen, S. R. Marder, J. W. Perry, Adv. Mater. 2007, 19, 1001.
- 21 J. J. Li, J. Claude, L. E. Norena-Franco, S. I. Seok, Q. Wang, Chem. Mater. 2008, 20, 6304.
- 22 Z. M. Dang, H. Y. Wang, Y. H. Zhang, J. Q. Qi, Macromol. Rapid Commun. 2005, 26, 1185.
- 23 C. G. Hardy, M. S. Islam, D. Gonzalez-Delozier, H. J. Ploehn, C. Tang, Macromol. Rapid Commun. 2012, 33, 791.
- 24 T. Dai, K. Chen, X. Qing, Y. Lu, J. Zhu, F. Gao, Macromol. Rapid Commun. 2010, 31, 484.
- 25 G. Subodh, V. Deepu, P. Mohanan, M. T. Sebastian, Appl. Phys. Lett. 2009, 95.
- 26 A. Maliakal, H. Katz, P. M. Cotts, S. Subramoney, P. Mirau, J. Am. Chem. Soc. 2005, 127, 14655.
- 27 N. Guo, S. A. DiBenedetto, D. K. Kwon, L. Wang, M. T. Russell, M. T. Lanagan, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2007, 129, 766.
- 28 N. Guo, S. A. DiBenedetto, P. Tewari, M. T. Lanagan, M. A. Ratner, T. J. Marks, Chem. Mater. 2010, 22, 1567.
- 29 M. N. Tchoul, S. P. Fillery, H. Koerner, L. F. Drummy, F. T. Oyerokun, P. A. Mirau, M. F. Durstock, R. A. Vaia, Chem. Mater. 2010, 22, 1749.
- 30 B. Balasubramanian, K. L. Kraemer, N. A. Reding, R. Skomski, S. Ducharme, D. J. Sellmyer, ACS Nano 2010, 4, 1893.
- 31 H. M. Jung, J. H. Kang, S. Y. Yang, J. C. Won, Y. S. Kim, Chem. Mater. 2010, 22, 450.
- 32 L. Y. Xie, X. Y. Huang, C. Wu, P. K. Jiang, J. Mater. Chem. 2011, 21, 5897.
- 33 J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559.
- 34
C. Barner-Kowollik,
Handbook of RAFT Polymerization, Wiley-VCH Verlag GmbH & Co. KGaA,
2008.
10.1002/9783527622757 Google Scholar
- 35 M. Semsarilar, S. Perrier, Nat. Chem. 2010, 2, 811.
- 36 M. H. Stenzel, Macromol. Rapid Commun. 2009, 30, 1603.
- 37 M. Beija, J. D. Marty, M. Destarac, Prog. Polym. Sci. 2011, 36, 845.
- 38 J.-T. Sun, Z.-Q. Yu, C.-Y. Hong, C.-Y. Pan, Macromol. Rapid Commun. 2012, 33, 811.
- 39 C. Li, J. Han, C. Y. Ryu, B. C. Benicewicz, Macromolecules 2006, 39, 3175.
- 40 X. Q. Zhang, J. G. Li, W. Li, A. Zhang, Biomacromolecules 2007, 8, 3557.
- 41 K. Ohno, Y. Ma, Y. Huang, C. Mori, Y. Yahata, Y. Tsujii, T. Maschmeyer, J. Moraes, S. Perrier, Macromolecules 2011, 44, 8944.
- 42 J. J. Li, P. Khanchaitit, K. Han, Q. Wang, Chem. Mater. 2010, 22, 5350
- 43 J. Chon, S. Ye, K. J. Cha, S. C. Lee, Y. S. Koo, J. H. Jung, Y. K. Kwon, Chem. Mater. 2010, 22, 450.