Volume 298, Issue 7 pp. 2177-2203
ORIGINAL ARTICLE

Differential norms and Rieffel algebras

Rodrigo A. H. M. Cabral

Corresponding Author

Rodrigo A. H. M. Cabral

Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo (IME-USP), São Paulo, Brazil

Correspondence

Rodrigo A. H. M. Cabral, Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo (IME-USP), BR-05508-090, São Paulo, SP, Brazil.

Email: [email protected]; [email protected]

Search for more papers by this author
Michael Forger

Michael Forger

Departamento de Matemática Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo (IME-USP), São Paulo, Brazil

Search for more papers by this author
Severino T. Melo

Severino T. Melo

Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo (IME-USP), São Paulo, Brazil

Search for more papers by this author
First published: 04 June 2025

Abstract

We develop criteria to guarantee uniqueness of the C ${\rm C}^*$ -norm on a $*$ -algebra B $\mathcal {B}$ . Nontrivial examples are provided by the noncommutative algebras of C $\mathcal {C}$ -valued functions S J C ( R n ) $\mathcal {S}_J^\mathcal {C}(\mathbb {R}^n)$ and B J C ( R n ) $\mathcal {B}_J^\mathcal {C}(\mathbb {R}^n)$ defined by M.A. Rieffel via a deformation quantization procedure, where C $\mathcal {C}$ is a C ${\rm C}^*$ -algebra and J $J$ is a skew-symmetric linear transformation on R n $\mathbb {R}^n$ with respect to which the usual pointwise product is deformed. In the process, we prove that the Fréchet $*$ -algebra topology of B J C ( R n ) $\mathcal {B}_J^\mathcal {C}(\mathbb {R}^n)$ can be generated by a sequence of submultiplicative $*$ -norms and that, if C $\mathcal {C}$ is unital, this algebra is closed under the C ${\rm C}^\infty$ -functional calculus of its C ${\rm C}^*$ -completion. We also show that the algebras S J C ( R n ) $\mathcal {S}_J^\mathcal {C}(\mathbb {R}^n)$ and B J C ( R n ) $\mathcal {B}_J^\mathcal {C}(\mathbb {R}^n)$ are spectrally invariant in their respective C ${\rm C}^*$ -completions, when C $\mathcal {C}$ is unital. As a corollary of our results, we obtain simple proofs of certain estimates in B J C ( R n ) $\mathcal {B}_J^\mathcal {C}(\mathbb {R}^n)$ .

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.