Recent Advances in 2D Material/Conducting Polymer Composites for Thermoelectric Energy Conversion
Yeye Wang
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorZuzhi Bai
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorYong Guo
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorCongcong Liu
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Flexible Electronics Innovation Institute (FEII), Jiangxi Science & Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorQinglin Jiang
Institute Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorFengxing Jiang
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorJiaji Yang
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorWenjun Ding
Interdisciplinary Materials Research Center School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
Search for more papers by this authorPeipei Liu
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Flexible Electronics Innovation Institute (FEII), Jiangxi Science & Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorCorresponding Author
Jingkun Xu
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Flexible Electronics Innovation Institute (FEII), Jiangxi Science & Technology Normal University, Nanchang, 330013 P. R. China
E-mail: [email protected]
Search for more papers by this authorYeye Wang
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorZuzhi Bai
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorYong Guo
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorCongcong Liu
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Flexible Electronics Innovation Institute (FEII), Jiangxi Science & Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorQinglin Jiang
Institute Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorFengxing Jiang
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorJiaji Yang
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorWenjun Ding
Interdisciplinary Materials Research Center School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P. R. China
Search for more papers by this authorPeipei Liu
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Flexible Electronics Innovation Institute (FEII), Jiangxi Science & Technology Normal University, Nanchang, 330013 P. R. China
Search for more papers by this authorCorresponding Author
Jingkun Xu
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013 P. R. China
Flexible Electronics Innovation Institute (FEII), Jiangxi Science & Technology Normal University, Nanchang, 330013 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Two-dimensional material (2DM)/conducting polymer (CP) composites with excellent electrical transport behavior, functional multidimensional structure, and good flexibility have attracted widespread attention as potential composite thermoelectric (TE) materials in the field of energy conversion. Appropriate preparation strategies determine the interface microstructure of 2DM/CP composites, which would influence the optimization degree of TE performance and practical applications. This review describes the recent progress in preparing advanced 2DM/CP composites by different design strategies for improving TE performance. In addition, some typical 2DM/CP composites applied to TE generators are also presented. Finally, other challenges and opportunities toward high-performance 2DM/CP composites are discussed, including precise structural regulation, an in-depth understanding of the interfacial transport mechanism, and the development of practical 2DM/CP-based flexible TE devices.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1L. Zhang, X.-L. Shi, Y.-L. Yang, Z.-G. Chen, Mater. Today 2021, 46, 62.
- 2Y. Wang, L. Yang, X.-L. Shi, X. Shi, L. Chen, M. S. Dargusch, J. Zou, Z.-G. Chen, Adv. Mater. 2019, 31, 1807916.
- 3X.-L. Shi, J. Zou, Z.-G. Chen, Chem. Rev. 2020, 120, 7399.
- 4P.-A. Zong, J. Liang, P. Zhang, C. Wan, Y. Wang, K. Koumoto, ACS Appl. Energy Mater. 2020, 3, 2224.
- 5K. Kanahashi, J. Pu, T. Takenobu, Adv. Energy Mater. 2020, 10, 1902842.
- 6G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A. J. Robinson, G. Hadziioannou, A. Pakdel, Mater. Today Phys. 2021, 18, 100402.
- 7M. Ahmadi, O. Zabihi, S. Jeon, M. Yoonessi, A. Dasari, S. Ramakrishna, M. Naebe, J. Mater. Chem. A 2020, 8, 845.
- 8C. Wan, R. Tian, M. Kondou, R. Yang, P. Zong, K. Koumoto, Nat. Commun. 2017, 8, https://doi.org/10.1038/s41467-017-01149-4.
10.1038/s41467?017?01149?4 Google Scholar
- 9Y. Wang, M. Hong, W.-D. Liu, X.-L. Shi, S.-D. Xu, Q. Sun, H. Gao, S. Lu, J. Zou, Z.-G. Chen, Chem. Eng. J. 2020, 397, 125360.
- 10D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M. G. Kanatzidis, Science 2000, 287, 1024.
- 11H. Jin, J. Li, J. Iocozzia, X. Zeng, P.-C. Wei, C. Yang, N. Li, Z. Liu Jr., H. He, T. Zhu, J. Wang, Z. Lin, S. Wang, Angew. Chem., Int. Ed. 2019, 58, 15206.
- 12B. Wu, Y. Guo, C. Hou, Q. Zhang, Y. Li, H. Wang, Adv. Funct. Mater. 2019, 29, 1900304.
- 13G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, L. Colombo, Nat. Nanotechnol. 2014, 9, 768.
- 14G. Zhang, Y.-W. Zhang, Mech. Mater. 2015, 91, 382.
- 15T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. Laforge, Science 2002, 297, 2229.
- 16G. Qiu, S. Huang, M. Segovia, P. K. Venuthurumilli, Y. Wang, W. Wu, X. Xu, P. D. Ye, Nano Lett. 2019, 19, 1955.
- 17J. Hong, C. Lee, J. S. Park, J. H. Shim, Phys. Rev. B 2016, 93, 6.
- 18Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W. Son, D. Feng, S. Li, S.-W. Cheong, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2015, 10, 270.
- 19Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H. H. Hng, H. Zhang, Angew. Chem., Int. Ed. 2012, 51, 9052.
- 20W. Bao, J. Wan, X. Han, X. Cai, H. Zhu, D. Kim, D. Ma, Y. Xu, J. N. Munday, H. D. Drew, Nat. Commun. 2014, 5, https://doi.org/10.1038/ncomms5224.
- 21J. Wan, S. D. Lacey, J. Dai, W. Bao, M. S. Fuhrer, L. Hu, Chem. Soc. Rev. 2016, 45, 6742.
- 22Y. Zheng, H. Zeng, Q. Zhu, J. Xu, J. Mater. Chem. C 2018, 6, 8858.
- 23Q. Zhang, Y. Sun, W. Xu, D. Zhu, Energy Environ. Sci. 2012, 5, 9639.
- 24M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yang, F. Qiu, Energy Environ. Sci. 2012, 5, 8351.
- 25Y. Wang, J. Yang, L. Wang, K. Du, Q. Yin, Q. Yin, ACS Appl. Mater. Interfaces 2017, 9, 20124.
- 26D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, H. Xie, Nano-Micro Lett. 2020, 12, https://doi.org/10.1007/s40820-020-0374-x.
10.1007/s40820?020?0374?x Google Scholar
- 27X. Wang, F. Meng, Q. Jiang, W. Zhou, F. Jiang, T. Wang, X. Li, S. Li, Y. Lin, J. Xu, ACS Appl. Energy Mater. 2018, 1, 3123.
- 28A. Sajedi-Moghaddam, E. Saievar-Iranizad, M. Pumera, Nanoscale 2017, 9, 8052.
- 29C. Cho, K. L. Wallace, P. Tzeng, J.-H. Hsu, C. Yu, J. C. Grunlan, Adv. Energy Mater. 2016, 6, 1502168.
- 30X. Zhang, L.-D. Zhao, J. Materiomics 2015, 1, 92.
- 31J. Wu, Y. Chen, J. Wu, K. Hippalgaonkar, Adv. Electron. Mater. 2018, 4, 1800248.
- 32J. Yang, H.-L. Yip, A. K.-Y. Jen, Adv. Energy Mater. 2013, 3, 549.
- 33A. Popescu, L. M. Woods, J. Martin, G. S. Nolas, Phys. Rev. B 2009, 79, 205302.
- 34D. Vashaee, A. Shakouri, Phys. Rev. Lett. 2004, 92, 106103.
- 35T. E. Humphrey, M. F. O'dwyer, H. Linke, J. Phys. D: Appl. Phys. 2005, 38, 2051.
- 36J. Zhou, X. Li, G. Chen, R. Yang, Phys. Rev. B 2010, 82, 115308.
- 37D. M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC Press, Boca Raton, FL 2018.
10.1201/9781420038903 Google Scholar
- 38J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science 2008, 321, 554.
- 39S. Yazdani, M. T. Pettes, Nanotechnology 2018, 29, 432001.
- 40J. He, T. M. Tritt, Science 2017, 357, eaak9997.
- 41G. D. Mahan, J. O. Sofo, Proc. Natl. Acad. Sci. USA 1996, 93, 7436.
- 42L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, L. Chen, J. Mater. Chem. A 2015, 3, 7086.
- 43F. Jiang, J. Xiong, W. Zhou, C. Liu, L. Wang, F. Zhao, H. Liu, J. Xu, J. Mater. Chem. A 2016, 4, 5265.
- 44H. Ju, J. Kim, ACS Nano 2016, 10, 5730.
- 45T. G. Novak, H. Shin, J. Kim, K. Kim, A. Azam, C. V. Nguyen, S. H. Park, J. Y. Song, S. Jeon, ACS Appl. Mater. Interfaces 2018, 10, 17957.
- 46L. Chen, R. Liu, H. Shi, Science Press, Thermoelectric materials and devices, Beijing 2018, p. 16.
- 47Q. Yao, L. Chen, W. Zhang, S. Liufu, X. Chen, ACS Nano 2010, 4, 2445.
- 48X. Xu, J. Zhou, J. Chen, Adv. Funct. Mater. 2020, 30, 1904704.
- 49O. Bubnova, X. Crispin, Energy Environ. Sci. 2012, 5, 9345.
- 50H.-F. Meng, C.-M. Lai, Phys. Rev. B 1997, 55, 13611.
- 51G.-H. Kim, L. Shao, K. Zhang, K. P. Pipe, Nat. Mater. 2013, 12, 719.
- 52C. Huang, X. Qian, R. Yang, Mater. Sci. Eng., R 2018, 132, 1.
- 53L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, L. Chen, J. Mater. Chem. A 2014, 2, 11107.
- 54K. Zhang, S. Wang, X. Zhang, Y. Zhang, Y. Cui, J. Qiu, Nano Energy 2015, 13, 327.
- 55J. J. Richardson, J. Cui, M. Björnmalm, J. A. Braunger, H. Ejima, F. Caruso, Chem. Rev. 2016, 116, 14828.
- 56J. Fu, J. B. Schlenoff, J. Am. Chem. Soc. 2016, 138, 980.
- 57F. Li, K. Cai, S. Shen, S. Chen, Synth. Met. 2014, 197, 58.
- 58D. Yoo, J. Kim, J. H. Kim, Nano Res. 2014, 7, 717.
- 59J. Xiong, F. Jiang, H. Shi, J. Xu, C. Liu, W. Zhou, Q. Jiang, Z. Zhu, Y. Hu, ACS Appl. Mater. Interfaces 2015, 7, 14917.
- 60T. Wang, C. Liu, X. Wang, X. Li, F. Jiang, C. Li, J. Hou, J. Xu, J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 997.
- 61X. Li, C. Liu, T. Wang, W. Wang, X. Wang, Q. Jiang, F. Jiang, J. Xu, Mater. Res. Express 2017, 4, 116410.
- 62X. Cheng, L. Wang, X. Wang, G. Chen, Compos. Sci. Technol. 2018, 155, 247.
- 63M. Bharti, A. Singh, G. Saini, S. Saha, A. Bohra, Y. Kaneko, A. K. Debnath, K. P. Muthe, K. Marumoto, D. K. Aswal, S. C. Gadkari, J. Power Sources 2019, 435, 226758.
- 64X. Guan, W. Feng, X. Wang, R. Venkatesh, J. Ouyang, ACS Appl. Mater. Interfaces 2020, 12, 13013.
- 65Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 2010, 22, 3906.
- 66X. Du, I. Skachko, A. Barker, E. Y. Andrei, Nat. Nanotechnol. 2008, 3, 491.
- 67X. An, J. C. Yu, RSC Adv. 2011, 1, 1426.
- 68A. Dey, O. P. Bajpai, A. K. Sikder, S. Chattopadhyay, M. A. S. Khan, Renewable Sustainable Energy Rev. 2016, 53, 653.
- 69A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902.
- 70Q. Zheng, Z. Li, J. Yang, J.-K. Kim, Prog. Mater. Sci. 2014, 64, 200.
- 71P. Dollfus, V. H. Nguyen, J. Saint-Martin, J. Phys.: Condens. Matter. 2015, 27, 133204.
- 72Y.-Y. Hsieh, Y. Zhang, L. Zhang, Y. Fang, S. N. Kanakaraaj, J.-H. Bahk, V. Shanov, Nanoscale 2019, 11, 6552.
- 73A. J. Marsden, D. G. Papageorgiou, C. Vallés, A. Liscio, V. Palermo, M. A. Bissett, R. J. Young, I. A. Kinloch, 2D Mater. 2018, 5, 032003.
- 74S. Maity, C. Kulsi, S. Banerjee, S. Das, K. Chatterjee, Mater. Res. Express 2019, 6, 105095.
- 75Y. W. Sun, W. Liu, I. Hernandez, J. Gonzalez, F. Rodriguez, D. J. Dunstan, C. J. Humphreys, Phys. Rev. Lett. 2019, 123, 135501.
- 76Y. Zhao, G.-S. Tang, Z.-Z. Yu, J.-S. Qi, Carbon 2012, 50, 3064.
- 77K. Hu, D. D. Kulkarni, I. Choi, V. V. Tsukruk, Prog. Polym. Sci. 2014, 39, 1934.
- 78Q. Cheng, M. Wu, M. Li, L. Jiang, Z. Tang, Angew. Chem. 2013, 125, 3838.
- 79Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699.
- 80H. Wang, H. Yuan, S. Sae Hong, Y. Li, Y. Cui, Chem. Soc. Rev. 2015, 44, 2664.
- 81J. Wu, H. Schmidt, K. K. Amara, X. Xu, G. Eda, B. Özyilmaz, Nano Lett. 2014, 14, 2730.
- 82G. Zhang, Y.-W. Zhang, J. Mater. Chem. C 2017, 5, 7684.
- 83Z. Wang, R. Li, C. Su, K. P. Loh, SmartMat 2020, 1, e1013.
- 84J. Y. Oh, J. H. Lee, S. W. Han, S. S. Chae, E. J. Bae, Y. H. Kang, W. J. Choi, S. Y. Cho, J.-O. Lee, H. K. Baik, T. Il Lee, Energy Environ. Sci. 2016, 9, 1696.
- 85B.-Z. Lin, C. Ding, B.-H. Xu, Z.-J. Chen, Y.-L. Chen, Mater. Res. Bull. 2009, 44, 719.
- 86J. Zhu, W. Sun, D. Yang, Y. Zhang, H. H. Hoon, H. Zhang, Q. Yan, Small 2015, 11, 4123.
- 87Y. Lan, A. J. Minnich, G. Chen, Z. Ren, Adv. Funct. Mater. 2010, 20, 357.
- 88B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science 2008, 320, 634.
- 89L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373.
- 90O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Nat. Mater. 2011, 10, 429.
- 91C. Kim, J. Y. Baek, D. H. Lopez, D. H. Kim, H. Kim, Appl. Phys. Lett. 2018, 113, 5.
- 92E. J. Bae, Y. H. Kang, K.-S. Jang, S. Y. Cho, Sci. Rep. 2016, 6, 153901.
- 93L. Ren, X. Qi, Y. Liu, G. Hao, Z. Huang, X. Zou, L. Yang, J. Li, J. Zhong, J. Mater. Chem. 2012, 22, 4921.
- 94J. Kim, J.-H. Lim, J. Korean Ceram. Soc. 2017, 54, 272.
- 95H. Ju, D. Park, J. Kim, ACS Appl. Mater. Interfaces 2018, 10, 11920.
- 96Y. Du, K. F. Cai, S. Chen, P. Cizek, T. Lin, ACS Appl. Mater. Interfaces 2014, 6, 5735.
- 97B. Smith, B. Vermeersch, J. Carrete, E. Ou, J. Kim, N. Mingo, D. Akinwande, L. Shi, Adv. Mater. 2017, 29, 1603756.
- 98B. Sun, X. Gu, Q. Zeng, X. Huang, Y. Yan, Z. Liu, R. Yang, Y. K. Koh, Adv. Mater. 2017, 29, 1603297.
- 99S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H. S. Choe, A. Suslu, Y. Chen, C. Ko, Nat. Commun. 2015, 6, https://doi.org/10.1038/ncomms9573.
- 100L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372.
- 101E. Flores, J. R. Ares, A. Castellanos-Gomez, M. Barawi, I. J. Ferrer, C. Sánchez, Appl. Phys. Lett. 2015, 106, 022102.
- 102S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, H. Zhang, Adv. Sci. 2017, 4, 1600305.
- 103A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, H. S. J. Van Der Zant, 2D Mater. 2014, 1, 025001.
- 104E. Passaglia, F. Cicogna, F. Costantino, S. Coiai, S. Legnaioli, G. Lorenzetti, S. Borsacchi, M. Geppi, F. Telesio, S. Heun, A. Ienco, M. Serrano-Ruiz, M. Peruzzini, Chem. Mater. 2018, 30, 2036.
- 105M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum, ACS Nano 2012, 6, 1322.
- 106O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall'agnese, M. Heon, M. W. Barsoum, Y. Gogotsi, Nat. Commun. 2013, 4, 1716.
- 107M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Phys. Chem. Chem. Phys. 2014, 16, 7841.
- 108S. Lai, J. Jeon, S. K. Jang, J. Xu, Y. J. Choi, J.-H. Park, E. Hwang, S. Lee, Nanoscale 2015, 7, 19390.
- 109S. Sarikurt, D. Çakır, M. Keçeli, C. Sevik, Nanoscale 2018, 10, 8859.
- 110M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248.
- 111P. Liu, W. Ding, J. Liu, L. Shen, F. Jiang, P. Liu, Z. Zhu, G. Zhang, C. Liu, J. Xu, J. Alloys Compd. 2020, 829, 154634.
- 112B. Rungtaweevoranit, Y. Zhao, K. M. Choi, O. M. Yaghi, Nano Res. 2016, 9, 47.
- 113L. Sun, B. Liao, D. Sheberla, D. Kraemer, J. Zhou, E. A. Stach, D. Zakharov, V. Stavila, A. A. Talin, Y. Ge, M. D. Allendorf, G. Chen, F. Léonard, M. Dincă, Joule 2017, 1, 168.
- 114K. J. Erickson, F. Léonard, V. Stavila, M. E. Foster, C. D. Spataru, R. E. Jones, B. M. Foley, P. E. Hopkins, M. D. Allendorf, A. A. Talin, Adv. Mater. 2015, 27, 3453.
- 115C.-C. Lin, Y.-C. Huang, M. Usman, W.-H. Chao, W.-K. Lin, T.-T. Luo, W.-T. Whang, C.-H. Chen, K.-L. Lu, ACS Appl. Mater. Interfaces 2018, 11, 3400.
- 116M. Zhao, Q. Lu, Q. Ma, H. Zhang, Small Methods 2017, 1, 1600030.
- 117Y. Wang, Y. Shi, D. Mei, Z. Chen, Appl. Energy 2018, 215, 690.
- 118J. Yan, X. Liao, D. Yan, Y. Chen, J. Microelectromech. Syst. 2018, 27, 1.
- 119A. Lay-Ekuakille, G. Vendramin, A. Trotta, G. Mazzotta, in IEEE International Workshop on Medical Measurements and Applications, IEEE, Piscataway, NJ 2009, p. 10790979.
- 120C. Zheng, L. Xiang, W. Jin, H. Shen, W. Zhao, F. Zhang, C.-A. Di, D. Zhu, Adv. Mater. Technol. 2019, 4, 1900247.
- 121J. Yuan, R. Zhu, G. Li, Adv. Mater. Technol. 2020, 5, 2000419.
- 122C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, G. J. Snyder, R. Yang, K. Koumoto, Nat. Mater. 2015, 14, 622.
- 123W. Zhou, Q. Fan, Q. Zhang, L. Cai, K. Li, X. Gu, F. Yang, N. Zhang, Y. Wang, H. Liu, Nat. Commun. 2017, 8, https://doi.org/10.1038/ncomms14886.
- 124G. Wu, C. Gao, G. Chen, X. Wang, H. Wang, J. Mater. Chem. A 2016, 4, 14187.
- 125J. Weber, K. Potje-Kamloth, F. Haase, P. Detemple, F. Völklein, T. Doll, Sens. Actuators, A 2006, 132, 325.
- 126Y. Jia, Q. Jiang, H. Sun, P. Liu, D. Hu, Y. Pei, W. Liu, X. Crispin, S. Fabiano, Y. Ma, Y. Cao, Adv. Mater. 2021, 33, 2102990.
- 127D. Crane, J. Lagrandeur, V. Jovovic, M. Ranalli, M. Adldinger, E. Poliquin, J. Dean, D. Kossakovski, B. Mazar, C. Maranville, J. Electron. Mater. 2013, 42, 1582.
- 128Q. Shi, T. Wang, C. Lee, Sci. Rep. 2016, 6, https://doi.org/10.1038/srep24946.
- 129L. Lou, D. Shou, H. Park, D. Zhao, Y. S. Wu, X. Hui, R. Yang, E. C. Kan, J. Fan, Energy Build. 2020, 226, 110374.
- 130H. Song, K. Cai, Energy 2017, 125, 519.
- 131C. Gao, G. Chen, Small 2018, 14, 1703453.
- 132Z. Zhang, J. Qiu, S. Wang, Manuf. Lett. 2016, 8, 6.
10.1016/j.matlet.2016.05.069 Google Scholar
- 133X. Liu, Y. Du, Q. Meng, S. Z. Shen, J. Xu, J. Mater. Sci.: Mater. Electron. 2019, 30, 20369.
- 134N. A. Khoso, X. Jiao, X. Guangyu, S. Tian, J. Wang, RSC Adv. 2021, 11, 16675.
- 135R. Tian, C. Wan, Y. Wang, Q. Wei, T. Ishida, A. Yamamoto, A. Tsuruta, W. Shin, S. Li, K. Koumoto, J. Mater. Chem. A 2017, 5, 564.
- 136J. H. We, S. J. Kim, B. J. Cho, Energy 2014, 73, 506.
- 137C. Li, F. Jiang, C. Liu, W. Wang, X. Li, T. Wang, J. Xu, Chem. Eng. J. 2017, 320, 201.
- 138Y. Du, X. Liu, J. Xu, S. Z. Shen, Mater. Chem. Front. 2019, 3, 1328.
- 139Y. Huang, J. Liang, C. Wang, S. Yin, W. Fu, H. Zhu, C. Wan, Chem. Soc. Rev. 2020, 49, 6866.
- 140C. Wang, Q. He, U. Halim, Y. Liu, E. Zhu, Z. Lin, H. Xiao, X. Duan, Z. Feng, R. Cheng, N. O. Weiss, G. Ye, Y.-C. Huang, H. Wu, H.-C. Cheng, I. Shakir, L. Liao, X. Chen, W. A. Goddard Iii, Y. Huang, X. Duan, Nature 2018, 555, 231.
- 141B. Liu, J. Hu, J. Zhou, R. Yang, Materials 2017, 10, 418.
- 142Q. Xu, S.-M. Xu, R. Tian, C. Lu, ACS Appl. Mater. Interfaces 2020, 12, 13371.
- 143C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, X. Zhang, Nature 2017, 546, 265.
- 144B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. Mcguire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X. Xu, Nature 2017, 546, 270.
- 145X. C. Xuan, Semicond. Sci. Technol. 2002, 17, 114.