Investigation of corrosion behavior at elbow by array electrode and computational fluid dynamics simulation
Xiaodong Si
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, China
Search for more papers by this authorHongtao Si
Wansheng Mining of Chongqing Conservation and Repair of Ecological Environment Observation and Research Station, Chongqing Institute of Geology and Mineral Resources, Chongqing, China
Search for more papers by this authorManyi Li
Wansheng Mining of Chongqing Conservation and Repair of Ecological Environment Observation and Research Station, Chongqing Institute of Geology and Mineral Resources, Chongqing, China
Search for more papers by this authorRui Zhang
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, China
Search for more papers by this authorCorresponding Author
Keyi Zhou
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, China
Correspondence Keyi Zhou, Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096 Jiangsu, China.
Email: [email protected]
Search for more papers by this authorXiaodong Si
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, China
Search for more papers by this authorHongtao Si
Wansheng Mining of Chongqing Conservation and Repair of Ecological Environment Observation and Research Station, Chongqing Institute of Geology and Mineral Resources, Chongqing, China
Search for more papers by this authorManyi Li
Wansheng Mining of Chongqing Conservation and Repair of Ecological Environment Observation and Research Station, Chongqing Institute of Geology and Mineral Resources, Chongqing, China
Search for more papers by this authorRui Zhang
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, China
Search for more papers by this authorCorresponding Author
Keyi Zhou
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, China
Correspondence Keyi Zhou, Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096 Jiangsu, China.
Email: [email protected]
Search for more papers by this authorAbstract
The present study focuses on the flow-accelerated corrosion (FAC) behavior of A106Gr.B steel at 90° elbow by electrochemical measurement and computational fluid dynamics (CFD) simulation. The FAC rates under turbulent flows with a velocity of 3 and 1.5 m/s were measured by an array electrode technique in a loop system. The experimental results reveal that the maximum FAC rate appears at the extrados of 90° elbow, consistent with the locations from the rupture of the carbon steel piping in the worst cases at elbows. In addition, an effective mass transfer coefficient in consideration of the geometric factor was used to evaluate the FAC rate at intrados and extrados of the 90° elbow by CFD simulation. The predicted results are in good agreement with the experimental values.
REFERENCES
- 1Y. Xu, M. Y. Tan, Corros. Sci. 2018, 139, 438.
- 2T. S. Ajmal, S. B. Arya, K. R. Udupa, Int. J. Pressure Vessels Piping 2019, 174, 42.
- 3Y. Xu, M. Y. Tan, Corros. Sci. 2019, 151, 163.
- 4Y. Utanohara, M. Murase, Nucl. Eng. Des. 2019, 342, 20.
- 5V. Kain, Procedia Eng. 2014, 86, 576.
- 6V. Kain, S. Roychowdhury, P. Ahmedabadi, D. K. Barua, Eng. Failure Anal. 2011, 18, 2028.
- 7K. Fujiwara, M. Domae, K. Yoneda, F. Inada, T. Ohira, K. Hisamune, Nucl. Eng. Des. 2011, 241, 4482.
- 8Y. Utanohara, Y. Nagaya, A. Nakamura, M. Murase, K. Kamahori, J. Power Energy Syst. 2013, 7, 138.
10.1299/jpes.7.138 Google Scholar
- 9S. Jiang, F. Chai, H. Su, C. Yang, Corros. Sci. 2017, 123, 217.
- 10K. Fujiwara, M. Domae, K. Yoneda, F. Inada, Corros. Sci. 2011, 53, 3526.
- 11X. L. Zhu, X. F. Lu, X. Ling, Mater. Corros. 2013, 64, 486.
- 12K. Ting, Y. P. Ma, Nucl. Eng. Des. 1999, 191, 231.
- 13J. Chen, X. Wang, Y. Wang, H. Huang, Materialwiss. Werkstofftech. 2019, 50, 442.
- 14C. Sanama, M. Sharifpur, J. P. Meyer, Nucl. Eng. Des. 2018, 326, 285.
- 15M. Prasad, V. Gopika, A. Sridharan, S. Parida, Prog. Nucl. Energy 2018, 107, 205.
- 16M. Prasad, V. Gopika, A. Sridharan, S. Parida, A. J. Gaikwad, Ann. Nucl. Energy 2018, 117, 247.
- 17G. A. Zhang, L. Zeng, H. L. Huang, X. P. Guo, Corros. Sci. 2013, 77, 334.
- 18H. L. Huang, J. Tian, G. A. Zhang, Z. Q. Pan, Mater. Chem. Phys. 2016, 181, 312.
- 19Y. Ikarashi, S. Taguchi, T. Yamagata, N. Fujisawa, Int. J. Heat Mass Transfer 2017, 107, 1085.
- 20N. Fujisawa, K. Uchiyama, T. Yamagata, Int. J. Heat Mass Transfer 2017, 105, 316.
- 21G. D. Song, S. H. Jeon, Y. H. Son, J. G. Kim, D. H. Hur, Corros. Sci. 2018, 131, 71.
- 22T. Wan, S. Saito, Metals 2018, 8, 627.
- 23S. Oh, Y. Cheong, D. Kim, K. Kim, Sensors 2019, 19, 1762.
- 24P. Madasamy, T. V. K. Mohan, A. Sylvanus, E. Natarajan, H. P. Rani, S. Velmurugan, Eng. Failure Anal. 2018, 94, 458.
- 25J. Qi, K. Y. Zhou, J. L. Huang, X. D. Si, Appl. Therm. Eng. 2018, 128, 244.
- 26J. Qi, K. Y. Zhou, J. L. Huang, X. D. Si, Int. J. Heat Mass Transfer 2018, 122, 929.
- 27X. D. Si, R. Zhang, Q. Xu, K. Y. Zhou, Mater. Res. Express 2020, 6, 016557.
- 28R. M. Bandeira, J. van Drunen, A. C. Garcia, G. Tremiliosi-Filho, Electrochim. Acta 2017, 240, 215.
- 29J. Wang, Y. Jang, G. Wan, V. Giridharan, G. L. Song, Z. Xu, Y. Koo, P. Qi, J. Sankar, N. Huang, Y. Yun, Corros. Sci. 2016, 104, 277.
- 30S. Chong, J. Li, S. Shuang, H. Zeng, J. L. Luo, Corros. Sci. 2018, 134, 23.
- 31G. V. Tomarov, A. A. Shipkov, Therm. Eng. 2018, 65, 493.
- 32L. E. Sanchez-Caldera, P. Griffith, E. Rabinowicz, J. Eng. Gas Turbines Power 1988, 110, 180.
- 33G. Schikorr, Z. Anorg. Allg. Chem. 1933, 212, 33.
- 34N. Y. Lee, S. G. Lee, K. H. Ryu, I. S. Hwang, Nucl. Eng. Des. 2007, 237, 761.
- 35B. Poulson, Int. J. Nucl. Energy Sci. Technol. 2014, 2014, 423295.
10.1155/2014/423295 Google Scholar
- 36S. E. Ziemniak, M. E. Jones, K. E. S. Combs, J. Solution Chem. 1995, 24, 837.
- 37T. H. Chilton, A. P. Colburn, Ind. Eng. Chem. 1934, 26, 1183.
- 38L. Zeng, G. A. Zhang, X. P. Guo, C. W. Chai, Corros. Sci. 2015, 90, 202.
- 39T. Y. Chen, A. A. Moccari, D. D. Macdonald, Corrosion 1992, 48, 239.
- 40S. Taguchi, Y. Ikarashi, T. Yamagata, N. Fujisawa, F. Inada, Int. Comm. Heat Mass Transfer 2018, 90, 103.
- 41J. M. Pietralik, E-J. Adv. Maint. 2012, 4, 63.
- 42J. M. Pietralik, C. S. Schefski, J. Eng. Gas Turbines Power 2011, 133, 012902.
- 43J. Wang, Ph.D. Thesis, University of Tulsa (Tusla, OK) 1997.
- 44N. Li, J. Nucl. Mater. 2002, 300, 73.
- 45X. D. Si, K. Y. Zhou, R. Zhang, T. Lin, Q. Xu, Mater. Res. Express 2018, 5, 066536.
- 46F. Farelas, M. Singer, D. Nugraha, S. Whitehurst, B. Kinsella, presented at CORROSION 2018, Phoenix, AZ, April 2018.
- 47T. Shakouchi, K. Kinoshita, M. Kugimoto, K. Tsujimoto, T. Ando, J. Fluid Sci. Technol. 2014, 9, JFST0036.
10.1299/jfst.2014jfst0036 Google Scholar
- 48W. H. Ahmed, M. M. Bello, M. E. Nakla, A. A. Sarkhi, Nucl. Eng. Des. 2012, 252, 52.
- 49H. J. Kim, K. H. Kim, Nucl. Eng. Des. 2016, 301, 183.