Engineering RAFT Polymers to the Protein-capped Gold Nanoclusters for Developing Fluorescent Polymeric Nanoconjugates
Raviteja Gaddala
Department of Chemistry, École Centrale School of Engineering, Mahindra University, Hyderabad, 500043 India
Search for more papers by this authorAruna Kumar Chelluboyina
Center for Life Sciences, Mahindra University, Hyderabad, 500043 India
Search for more papers by this authorCorresponding Author
Sonu Kumar
Department of Chemistry, École Centrale School of Engineering, Mahindra University, Hyderabad, 500043 India
E-mail: [email protected]
Search for more papers by this authorRaviteja Gaddala
Department of Chemistry, École Centrale School of Engineering, Mahindra University, Hyderabad, 500043 India
Search for more papers by this authorAruna Kumar Chelluboyina
Center for Life Sciences, Mahindra University, Hyderabad, 500043 India
Search for more papers by this authorCorresponding Author
Sonu Kumar
Department of Chemistry, École Centrale School of Engineering, Mahindra University, Hyderabad, 500043 India
E-mail: [email protected]
Search for more papers by this authorAbstract
The synthesis of fluorescent hybrid nanomaterials engineered via the chain-end modification of reversible addition-fragmentation chain-transfer (RAFT) polymers on the surface of bovine serum albumin (BSA) protein-stabilized gold nanoclusters (AuNCs@BSA) is described. Based on the “grafting-to” approach the core-shell structured nanoconjugates AuNCs@BSA/polymer are generated via effective ligation of hydrophilic, and stimuli-responsive polymers. Such nanomaterials are characterized via various microscopic and spectroscopic studies and exhibit their size as ≈5 nm and emission peak at ≈650 nm. Interestingly, the conjugation of thermoresponsive polymer poly(diethylene glycol monomethyl ether methacrylate) (PDEGMA) transformed the nanoconjugates AuNCs@BSA/PDEGMA as dual thermo/pH-responsive nanomaterials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
mabi202400451-sup-0001-SuppMat.docx26.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. O. Alis, J. Alicia, S. Gadi, T. Shahar, P. Silvia, R. D. L. R. Victor, H. Richard, J. A. Roey, A. Lorenzo, ACS Appl. Mater. Interfaces. 2023, 15, 59134.
- 2G. Jingjing, M. K. Jeffrey, L. Robert, J. Nitin, Chem. Mater. 2023, 35, 359.
- 3T. K. Christoforou, T. K. Georgiou, J. Mater. Chem. B. 2013, 1, 3002.
- 4S. Kumar, A. Tharayil, S. Thomas, ACS Appl. Polym. Mater. 2021, 3, 3685.
- 5R. Song, M. Murphy, C. Li, K. Ting, C. Soo, Z. Zheng, Drug Des. Devel. Ther. 2018, 24, 3117.
10.2147/DDDT.S165440 Google Scholar
- 6S. N. Bhatia, X. Chen, M. A. Dobrovolskaia, T. Lammers, Nat. Rev. Cancer. 2022, 22, 550.
- 7İ. Altun, A. Sonkaya, Iran. J. Public Health. 2018, 47, 1218.
- 8C. Li-Yi, W. Chia-Wei, Y. Zhiqin, C. Huan-Tsung, Anal. Chem. 2015, 87, 216.
- 9J. Xie, Y. Zheng, J. Y. Ying, J. Am. Chem. Soc. 2009, 131, 888.
- 10G. Ou, J. Zhao, P. Chen, C. Xiong, F. Dong, B. Li, X. Feng, Anal. Bioanal. Chem. 2018, 410, 2485.
- 11E. R. Hebels, M. Najafi, D. J. van den, N. Beztsinna, L. S. van de, D. Wilbie, J. Meeldijk, M. Hembury, T. Vermonden, Eur. Polym. J. 2021, 152, 110467.
- 12L. Luo, L. Zhen, Z. Hui, Z. Shoucun, M. Irfan, T. Bien, Nanoscale. 2013, 5, 1986.
- 13Y. Peng, L. Gao, G. Pidamaimaiti, D. Zhao, L. Zhang, G. Yin, F. Wang, Nanoscale. 2022, 14, 8342.
- 14F. Gröhn, B. J. Bauer, Y. A. Akpalu, C. L. Jackson, E. J. Amis, Macromolecules. 2000, 33, 6042.
- 15G. Wei, Z. Qi, Z. Ting, L. Yingying, X. Jian, P. Rui, L. Jian, J. Mater. Chem. B. 2016, 4, 910.
- 16G. D. Veerasikku, N. L. Meike, L. F. Nicholas, R. David, T. Terence, K. Nicholas, J. T. Kristofer, K. Kristian, H. V. Nicolas, C. R. Anna, Nano Lett. 2021, 21, 476.
- 17C. Dongyun, L. Zhentao, L. Najun, Y. L. Jim, X. Jianping, L. Jianmei, Adv. Funct. Mater. 2013, 23, 4324.
10.1002/adfm.201300411 Google Scholar
- 18C. Yujie, W. Xiaoyu, Z. Shuxian, L. Lu, L. Lidong, ACS. Appl. Bio Mater. 2021, 4, 2790.
- 19M. L. Sanne, R. H. Erik, V. Martina, H. Mathew, O. Sabrina, V. Tina, Bioconjugate Chem. 2022, 33, 4.
- 20Y. Guo, H. T. N. N. Amunyela, Y. Cheng, Y. Xie, H. Yu, W. Yao, H. W. Li, H. Qian, Food Chem. 2021, 335, 127657.
- 21L. Shang, G. U. Nienhaus, Biophys. Rev. 2012, 4, 313.
- 22A. M. Hada, A. M. Craciun, M. Focsan, R. Borlan, O. Soritau, M. Todea, S. Astilean, Talanta. 2021, 225, 121960.
- 23A. R. Ben, J. Barbara, C. Yu, J. Photochem. Photobiol. B, Biol. 2018, 187, 131.
- 24C. Ding, Y. Xu, Y. Zhao, H. Zhong, X. Luo, ACS Appl. Mater. Interfaces. 2018, 10, 8947.
- 25P. H. Chan, Y. C. Chen, Anal. Chem. 2012, 84, 8952.
- 26W. Fang, D. Yanhua, F. Lu, W. Song, Z. Sichun, Z. Xinrong, Anal. Chem. 2011, 83, 1193.
- 27C. Haiyan, L. Bowen, R. Xueyan, L. Shengnan, M. Yuxiang, C. Sisi, G. Yueqing, Biomaterials. 2012, 33, 8461.
- 28C. Haiyan, L. Shulan, L. Bowen, R. Xueyan, L. Shengnan, D M. Mahounga, C. Sisi, G. Yueqing, A. Samuel, Nanoscale. 2012, 4, 6050.
- 29B. Aniket, B. Swayoma, V. G. Elena, T. N. Ashvin, J. M. Michael, ACS Omega. 2017, 2, 2499.
- 30Q. Juan, M. Xiaoyu, Li Qi, D. Jingjing, M. Lanqun, Chem. Commun. 2013, 49, 8030.
- 31S. Das, A. Banerjee, S. Roy, T. Mallick, S. Maiti, P. De, ACS Appl. Bio Mater. 2024, 7, 144.
- 32A. Banerjee, A. Ghosh, B. Saha, P. Bhadury, P. De, Langmuir. 2024, 40, 5314.
- 33M. Dhara (Ganguly), J. Macromol. Sci., Part A. 2023, 60, 841.
10.1080/10601325.2023.2271040 Google Scholar
- 34Y. Zhang, J. Liu, J. Macromol. Sci., Part A. 2023, 60, 628.
- 35L. W. Lu, Q. Juan, H. L. Hui, H. Jie, Q. Li, P. Z. Xiao, L. Dan, X. N. Zong, Q. M. Lan, Anal. Chem. 2014, 86, 9758.
- 36C. Tong, X. Shuang, Z. Tong, Z. Ling, W. Dongfeng, L. Yuanyuan, Z. Haixia, Z. Chunyan, ACS. Appl. Mater. Interfaces. 2012, 4, 5766.
- 37M. Semsarilar, V. Abetz, Macromol. Chem. Phys. 2021, 222, 2000311.
- 38S. Kumar, W. H. Binder, Soft Matter. 2020, 16, 6964.
- 39G. Moad, E. Rizzardo, S. H. Thang, Chem Asian J. 2013, 8, 1634.
- 40S. Kumar, V. Bheemireddy, P. De, Macromol. Biosci. 2015, 15, 1447.
- 41K. A. Majorek, P. J. Porebski, A. Dayal, M. D. Zimmerman, K. Jablonska, A. J. Stewart, M. Chruszcz, W. Minor, Mol. Immunol. 2012, 52, 174.
- 42F. Bence, L. Jeppe, B. Boróka, M. Judith, V. Zoltán, M. Róbert, S. K. Jan, B. Attila, V. Imre, J. Mol. Liq. 2020, 309, 113065.
10.1016/j.molliq.2020.113065 Google Scholar
- 43J. Zheng, C. W. Zhang, R. M. Dickson, Phys. Rev. Lett. 2004, 93, 4.
- 44M. S. Messina, K. M. M. Messina, A. Bhattacharya, H. R. Montgomery, H. D. Maynard, Prog. Polym. Sci. 2020, 100, 101186.
- 45W. Gao, W. Liu, J. A. Mackaya, M. R. Zalutsky, E. J. Toone, A. Chilkoti, Proc. Natl. Acad. Sci. U. S A. 2009, 106, 15231.
- 46B. Trzebicka, R. Szweda, D. Kosowski, D. Szweda, Ł. Otulakowski, E. Haladjova, A. Dworak, Prog. Polym. Sci. 2017, 68, 35.
- 47P. J. Roth, F. D. Jochum, R. Zentel, P. Theato, Biomacromolecules. 2010, 11, 238.
- 48M. L. Tebaldi, H. Charan, L. Mavliutova, A. Böker, U. Glebe, Macromol. Chem. Phys. 2017, 218, 1600529.
- 49G. S. García-Briones, R. Laga, Z. Černochová, C. Arjona-Ruiz, O. Janoušková, M. Šlouf, O. Pop-Georgievski, D. Kubies, Eur. Polym. J. 2023, 191, 111976.
- 50D. A. Belinskaia, P. A. Voronina, V. I. Shmurak, M. A. Vovk, A. A. Batalova, R. O. Jenkins, N. V. Goncharov, Antioxidants. 2020, 9, 966.
- 51M. Graeme, R. Ezio, H. T. San, Polym. Int. 2011, 60, 9.
10.1002/pi.2988 Google Scholar
- 52P. Sébastien, T. Pittaya, A. M. Craig, Macromolecules. 2005, 38, 2033.
10.1021/ma047611m Google Scholar
- 53A. Dag, Y. Jiang, K. J. A. Karim, G. Hart-Smith, W. Scarano, M. H. Stenzel, Macromol. Rapid Commun. 2015, 36, 890.
- 54T. Wang, D. Xiao, Microchim. Acta. 2021, 188, 193.
- 55K. Dutta, D. Hu, B. Zhao, A. E. Ribbe, J. Zhuang, S. Thayumanavan, J. Am. Chem. Soc. 2017, 139, 5676.
- 56W. Wang, Y. Kong, J. Jiang, Q. Xie, Y. Huang, G. Li, D. Wu, H. Zheng, M. Gao, S. Xu, Y. Pan, W. Li, R. Ma, M. X. Wu, X. Li, H. Zuilhof, X. Cai, R. Li, Angew. Chem., Int. Ed. 2020, 59, 22431.