In Vitro Evaluation of Combined Sulfated Silk Fibroin Scaffolds for Vascular Cell Growth
Corresponding Author
Haifeng Liu
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of ChinaSearch for more papers by this authorXili Ding
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Search for more papers by this authorYanxue Bi
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Search for more papers by this authorXianghui Gong
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Search for more papers by this authorXiaoming Li
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Search for more papers by this authorGang Zhou
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Search for more papers by this authorCorresponding Author
Yubo Fan
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of ChinaSearch for more papers by this authorCorresponding Author
Haifeng Liu
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of ChinaSearch for more papers by this authorXili Ding
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Search for more papers by this authorYanxue Bi
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Search for more papers by this authorXianghui Gong
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Search for more papers by this authorXiaoming Li
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Search for more papers by this authorGang Zhou
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Search for more papers by this authorCorresponding Author
Yubo Fan
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of China
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, People's Republic of ChinaSearch for more papers by this authorAbstract
A combined sulfated silk fibroin scaffold is fabricated by modifying a knitted silk scaffold with sulfated silk fibroin sponges. In vitro hemocompatibility evaluation reveals that the combined sulfated silk fibroin scaffolds reduce platelet adhesion and activation, and prolong the activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT). The response of porcine endothelial cells (ECs) and smooth muscle cells (SMCs) on the scaffolds is studied to evaluate the cytocompatibility of the scaffolds. Vascular cells are seeded on the scaffolds and cultured for 2 weeks. The scaffolds demonstrate enhanced EC adhesion, proliferation, and maintenance of cellular functions. Moreover, the scaffolds inhibit SMC proliferation and induce expression of contractile SMC marker genes.
References
- 1 L. E. Niklason, J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, Science 1999, 16, 489.
- 2 R. M. Nerem, D. Seliktar, Annu. Rev. Biomed. Eng. 2001, 3, 225.
- 3 J. M. Heyligers, H. J. Verhagen, J. I. Rotmans, C. Weeterings, P. G. de Groot, F. L. Moll, J. Vasc. Surg. 2006, 43, 587.
- 4 B. I. Robinson, J. P. Fletcher, ANZ. J. Surg. 2003, 73, 95.
- 5
L. E. Niklason,
M. Seruya,
Small-Diameter Vascular Grafts,
Academic Press,
San Diego, CA, USA
2002.
10.1016/B978-012436636-7/50195-6 Google Scholar
- 6 H. Shin, S. Jo, A. G. Mikos, Biomaterials 2003, 24, 4353.
- 7 J. E. Rosenman, R. F. Kempczinski, W. H. Pearce, E. B. Silberstein, J. Vasc. Surg. 1985, 6, 778.
- 8 H. E. Roald, R. M. Barstad, I. J. Bakken, B. Roald, T. Lyberg, K. S. Sakariassen, Blood Coagulation Fibrinolysis 1994, 5, 355.
- 9 H. F. Liu, H. B. Fan, Y. Wang, S. L. Toh, J. C. H. Goh, Biomaterials 2008, 29, 662.
- 10 H. F. Liu, H. B. Fan, S. L. Toh, J. C. H. Goh, Biomaterials 2008, 29, 1443.
- 11 Y. Z. Wang, H. J. Kim, G. V. Novakovic, D. L. Kaplan, Biomaterials 2006, 27, 6064.
- 12 H. F. Liu, X. M. Li, G. Zhou, H. B. Fan, Y. B. Fan, Biomaterials 2011, 32, 3784.
- 13 H. F. Liu, X. M. Li, X. F. Niu, G. Zhou, P. Li, Y. B. Fan, Biomacromolecules 2011, 12, 2914.
- 14 E. Wintermantel, J. Mayer, J. Blum, K. L. Eckert, P. Luscher, M. Mathey, Biomaterials 1996, 17, 83.
- 15 V. Quaglini, C. Corazza, C. Poggi, Composites Part A 2008, 39, 1331.
- 16 M. S. Yeoman, D. Reddy, H. C. Bowles, D. Bezuidenhout, P. Zilla, T. Franz, Biomaterials 2010, 31, 8484.
- 17 X. G. Wang, C. M. Han, X. L. Hu, H. F. Sun, C. G. You, C. Y. Gao, J. Mech. Behav. Biomed. Mater. 2011, 4, 922.
- 18 S. Ravi, Z. Qu, E. L. Chaikof, Vascular 2009, 17, 45.
- 19 Y. M. Ju, J. S. Choi, A. Atala, J. J. Yoo, S. J. Lee, Biomaterials 2010, 31, 4313.
- 20 K. Torikai, H. Ichikawa, K. Hirakawa, G. Matsumiya, T. Kuratani, S. Iwai, J. Thorac. Cardiovasc. Surg. 2008, 136, 37.
- 21 B. Tschoeke, T. C. Flanagan, S. Koch, M. S. Harwoko, T. Deichmann, V. Ella, Tissue Eng., A 2009, 15, 1909.
- 22 T. Yagi, M. Sato, Y. Nakazawa, K. Tanaka, M. Sata, K. J. Itoh, Artif. Organs 2011, 14, 89.
- 23
J. M. Grunkemeier,
W. B. Tsai,
T. A. Horbett,
J. Biomed. Mater. Res.
1998,
41,
657.
10.1002/(SICI)1097-4636(19980915)41:4<657::AID-JBM18>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 24 D. Motlagh, J. Yang, K. Y. Lui, A. R. Webb, G. A. Ameer, Biomaterials 2006, 27, 4315.
- 25 J. W. Gu, X. L. Yang, H. S. Zhu, Mater. Sci. Eng., C 2002, 20, 199.
- 26 H. C. Wu, T. W. Wang, P. L. Kang, Y. H. Tsuang, J. S. Sun, F. H. Lin, Biomaterials 2007, 28, 1385.
- 27 Y. Qiu, N. Zhang, Q. Kang, Y. An, X. Wen, J. Biomed. Mater. Res., B: Appl. Biomater. 2009, 90, 668.
- 28 S. W. Wang, A. S. Gupta, P. M. Barendt, R. E. J. Marchant, Biomater. Sci. Polym. Ed. 2009, 20, 619.
- 29 J. D. Jeffrey, S. Li, In Vitro Vascular Tissue Engineering, CRC Press, Boca Raton, FL, USA 2011.
- 30 J. M. Heyligers, C. H. Arts, H. J. Verhagen, P. G. de Groot, F. L. Moll, Ann. Vasc. Surg. 2005, 19, 448.
- 31 P. A. Schneider, S. R. Hanson, Ti. M. Price, Surgery 1988, 103, 456.
- 32 J. B. Campbell, C. Lundgren, M. B. Herring, ASAIO J. 1985, 8, 113.
- 33 R. E. Baier, Ann. NY Acad. Sci. 1987, 516, 68.
- 34 N. Yayapour, H. Nygren, Colloids Surf., B: Biointerfaces 1999, 15, 127.
- 35 P. E. Stenberg, R. P. McEver, M. A. Shuman, Y. V. Jacques, D. F. Bainton, J. Cell Biol. 1985, 101, 880.
- 36 D. Gurney, G. Y. Lip, A. D. Blann, Am. J. Hematol. 2002, 70, 139.
- 37 W. C. Lin, T. Y. Liu, M. C. Yang, Biomaterials 2004, 25, 1947.
- 38 A. P. S. Azevedo, J. C. Farias, G. C. Costa, S. C. P. Ferreira, W. C. Aragao-Filho, P. R. A. Sousa, J. Ethnopharmacol. 2007, 111, 155.
- 39 J. Wang, Q. B. Zhang, Z. S. Zhang, H. F. Song, P. C. Li, Int. J. Biol. Macromol. 2010, 46, 6.
- 40 H. Li, W. Huang, Y. Q. Wen, G. H. Gong, Q. B. Zhao, G. Yu, Fitoterapia 2010, 81, 1147.
- 41 R. Y. Kannan, H. J. Salacinski, P. E. Butler, G. Hamilton, A. M. J. Seifalian, Biomed. Mater. Res., B: Appl. Biomater. 2005, 74, 570.
- 42 W. T. Zheng, Z. H. Wang, L. J. Song, Q. Zhao, J. Zhang, D. Li, Biomaterials 2012, 33, 2880.
- 43 J. P. Stegemann, S. L. Rowe, R. M. Nerem, Engineered Blood Vessel Substitutes, Taylor & Francis, London 2005.
- 44 J. A. Beamish, L. C. Geyer, N. A. Haq-Siddiqi, K. K. Kottke-Marchant, R. E. Marchant, Biomaterials 2009, 30, 6286.
- 45 H. G. Garg, B. T. Thompson, C. A. Hales, Am. J. Physiol. Lung. Cell. Mol. Physiol. 2000, 279, L779.
- 46 H. C. Reitz, R. E. Ferrel, H. Fraenkel-Conrat, H. S. Olcott, J. Am. Chem. Soc. 1946, 68, 1031.
- 47 H. B. Fan, H. F. Liu, S. L. Toh, J. C. H. Goh, Biomaterials 2008, 29, 3324.
- 48 X. Chen, Y. Y. Qi, L. L. Wang, Z. Yin, G. L. Yin, X. H. Zou, Biomaterials 2008, 29, 3683.