Effects of Static and Low-Frequency Magnetic Fields on Gene Expression
Corresponding Author
Vitalii Zablotskii DrSc
Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
International Magnetobiology Frontier Research Center (iMFRC), Science Island, Hefei, China
Address reprint requests to: Vitalii Zablotskii, Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00 Prague 8, Czech Republic. E-mail: [email protected]
Search for more papers by this authorOksana Gorobets DrSc
Faculty of Physics and Mathematics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
Search for more papers by this authorSvitlana Gorobets DrSc
Faculty of Biotechnology and Biotechnics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
Search for more papers by this authorTatyana Polyakova Mgr
Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
Search for more papers by this authorCorresponding Author
Vitalii Zablotskii DrSc
Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
International Magnetobiology Frontier Research Center (iMFRC), Science Island, Hefei, China
Address reprint requests to: Vitalii Zablotskii, Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00 Prague 8, Czech Republic. E-mail: [email protected]
Search for more papers by this authorOksana Gorobets DrSc
Faculty of Physics and Mathematics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
Search for more papers by this authorSvitlana Gorobets DrSc
Faculty of Biotechnology and Biotechnics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
Search for more papers by this authorTatyana Polyakova Mgr
Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
Search for more papers by this authorAbstract
Substantial research over the past two decades has established that magnetic fields affect fundamental cellular processes, including gene expression. However, since biological cells and subcellular components exhibit diamagnetic behavior and are therefore subjected to very small magnetic forces that cannot directly compete with the viscoelastic and bioelectric intracellular forces responsible for cellular machinery functions, it becomes challenging to understand cell–magnetic field interactions and to reveal the mechanisms through which these interactions differentially influence gene expression in cells. The limited understanding of the molecular mechanisms underlying biomagnetic effects has hindered progress in developing effective therapeutic applications of magnetic fields. This review examines the expanding body of literature on genetic events during static and low-frequency magnetic field exposure, focusing particularly on how changes in gene expression interact with cellular machinery. To address this, we conducted a systematic review utilizing extensive search strategies across multiple databases. We explore the intracellular mechanisms through which transcription functions may be modified by a magnetic field in contexts where other cellular signaling pathways are also activated by the field. This review summarizes key findings in the field, outlines the connections between magnetic fields and gene expression changes, identifies critical gaps in current knowledge, and proposes directions for future research.
Level of Evidence
NA
Technical Efficacy
Stage 4
References
- 1Schenck JF. Physical interactions of static magnetic fields with living tissues. Prog Biophys Mol Biol 2005; 87: 185-204.
- 2Zhang X, Yarema K, Xu A. Biological effects of static magnetic fields. Singapore: Springer; 2023. https://doi.org/10.1007/978-981-19-8869-1.
10.1007/978-981-19-8869-1 Google Scholar
- 3Wang X, Song C, Feng C, et al. Effects of 1.5–9.4 T high static magnetic fields on alcoholic liver disease in mice. J Magn Reson Imaging 2024; 60: 2231-2234. https://doi.org/10.1002/jmri.29297.
- 4Zhang L, Hou Y, Li Z, et al. 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells. Elife 2017; 6: 6. https://doi.org/10.7554/eLife.22911.
- 5Yu B, Song C, Feng C-L, et al. Effects of gradient high-field static magnetic fields on diabetic mice. Zool Res 2023; 44: 249-258.
- 6Fang F, Liu C, Huang Q, et al. Effect of static magnetic field on gene expression of human umbilical cord mesenchymal stem cells by transcriptome analysis. Adv Med Sci 2024; 69: 281-288.
- 7Hammer BE, Kidder LS, Williams PC, Xu WW. Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity. Microgravity Sci Technol 2009; 21: 311-318.
- 8Zhang Q-M, Tokiwa M, Doi T, et al. Strong static magnetic field and the induction of mutations through elevated production of reactive oxygen species in Escherichia coli soxR. Int J Radiat Biol 2003; 79: 281-286.
- 9Fei F, Zhang P, Li X, et al. Effect of static magnetic field on marine mollusc Elysia leucolegnote. Front Mol Biosci 2023; 9:1103648. https://doi.org/10.3389/fmolb.2022.1103648.
- 10Paul A, Ferl RJ, Meisel MW. High magnetic field induced changes of gene expression in Arabidopsis. Biomagn Res Technol 2006; 4: 7.
- 11Wang L, Du H, Guo X, et al. Developmental abnormality induced by strong static magnetic field in Caenorhabditis elegans. Bioelectromagnetics 2015; 36: 178-189.
- 12Hsieh C-H, Lee M-C, Tsai-Wu J-J, et al. Deleterious effects of MRI on chondrocytes. Osteoarthr Cartil 2008; 16: 343-351.
- 13Liu C, Lu S, Liu S, et al. 11.4 T ultra-high static magnetic field has no effect on morphology but induces upregulation of TNF signaling pathway based on transcriptome analysis in zebrafish embryos. Ecotoxicol Environ Saf 2023; 255:114754.
- 14Yang X, Yu B, Xi C, et al. A safety study on ultra-high or moderate static magnetic fields combined with platycodin D against lung cancer. Oncol Lett 2023; 26: 453.
- 15Wang Y, Chen Z-H, Yin C, et al. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields. PLoS One 2015; 10:e0116359.
- 16Miyakoshi J. The review of cellular effects of a static magnetic field. Sci Technol Adv Mater 2006; 7: 305-307.
- 17Ghodbane S, Lahbib A, Sakly M, Abdelmelek H. Bioeffects of static magnetic fields: Oxidative stress, genotoxic effects, and cancer studies. Biomed Res Int 2013; 2013: 1-12.
- 18Yusko EC, Asbury CL. Force is a signal that cells cannot ignore. Mol Biol Cell 2014; 25: 3717-3725.
- 19Torbati M, Mozaffari K, Liu L, Sharma P. Coupling of mechanical deformation and electromagnetic fields in biological cells. Rev Mod Phys 2022; 94:025003.
- 20Chen T, He HL, Church GM. Modeling gene expression with differential equations. Biocomputing '99. Mauna Lani, Hawaii, USA: World Scientific; 1998. p 29-40.
10.1142/9789814447300_0004 Google Scholar
- 21Zablotskii V, Polyakova T, Dejneka A. Cells in the non-uniform magnetic world: How cells respond to high-gradient magnetic fields. Bioessays 2018; 40:1800017.
- 22Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular mechanotransduction: From tension to function. Front Physiol 2018; 9:824. https://doi.org/10.3389/fphys.2018.00824.
- 23Lin H, Han L, Blank M, Head M, Goodman R. Magnetic field activation of protein-DNA binding. J Cell Biochem 1998; 70: 297-303. https://doi.org/10.1002/(SICI)1097-4644(19980901)70:3<297::AID-JCB2>3.0.CO;2-I.
10.1002/(SICI)1097-4644(19980901)70:3<297::AID-JCB2>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 24Finch-Edmondson M, Sudol M. Framework to function: Mechanosensitive regulators of gene transcription. Cell Mol Biol Lett 2016; 21: 28.
- 25Levin M. Reprogramming cells and tissue patterning via bioelectrical pathways: Molecular mechanisms and biomedical opportunities. WIREs Syst Biol Med 2013; 5: 657-676.
- 26Barbado M, Fablet K, Ronjat M, De Waard M. Gene regulation by voltage-dependent calcium channels. Biochim Biophys Acta Mol Cell Res 2009; 1793: 1096-1104.
- 27Cervera J, Meseguer S, Mafe S. The interplay between genetic and bioelectrical signaling permits a spatial regionalisation of membrane potentials in model multicellular ensembles. Sci Rep 2016; 6:35201.
- 28Gorobets O, Gorobets S, Sharai I, Polyakova T, Zablotskii V. Interaction of magnetic fields with biogenic magnetic nanoparticles on cell membranes: Physiological consequences for organisms in health and disease. Bioelectrochemistry 2023; 151:108390.
- 29Gorobets O, Gorobets S, Polyakova T, Zablotskii V. Modulation of calcium signaling and metabolic pathways in endothelial cells with magnetic fields. Nanoscale Adv 2024; 6: 1163-1182.
- 30Barbic M. Possible magneto-mechanical and magneto-thermal mechanisms of ion channel activation in magnetogenetics. Elife 2019; 8:e45807. https://doi.org/10.7554/eLife.45807.
- 31Park Y-J, Yoo S-A, Kim M, Kim W-U. The role of calcium–calcineurin–NFAT signaling pathway in health and autoimmune diseases. Front Immunol 2020; 11:195. https://doi.org/10.3389/fimmu.2020.00195.
- 32Smedler E, Uhlén P. Frequency decoding of calcium oscillations. Biochim Biophys Acta Gen Subj 2014; 1840: 964-969.
- 33Colella M, Grisan F, Robert V, Turner JD, Thomas AP, Pozzan T. Ca 2+ oscillation frequency decoding in cardiac cell hypertrophy: Role of calcineurin/NFAT as Ca 2+ signal integrators. Proc Natl Acad Sci 2008; 105: 2859-2864.
- 34Katsir G, Parola AH. Enhanced proliferation caused by a low frequency weak magnetic field in chick embryo fibroblasts is suppressed by radical scavengers. Biochem Biophys Res Commun 1998; 252: 753-756. https://doi.org/10.1006/bbrc.1998.9579.
- 35Ishizaki Y, Horiuchi S, Okuno K, Ano T, Shoda M. Twelve hours exposure to inhomogeneous high magnetic field after logarithmic growth phase is sufficient for drastic suppression of Escherichia coli death. Bioelectrochemistry 2001; 54: 101-105.
- 36Katsir G, Baram SC, Parola AH. Effect of sinusoidally varying magnetic fields on cell proliferation and adenosine deaminase specific activity. Bioelectromagnetics 1998; 19: 46-52.
- 37Potenza L, Ubaldi L, De Sanctis R, De Bellis R, Cucchiarini L, Dachà M. Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat Res 2004; 561: 53-62.
- 38Gorobets S, Gorobets O, Sharai I, Polyakova T, Zablotskii V. Gradient magnetic field accelerates division of E. coli Nissle 1917. Cells 2023; 12: 315.
- 39Gorobets Y, Gorobets S, Gorobets O, Magerman A, Sharai I. Biogenic and anthropogenic magnetic nanoparticles in the phloem sieve tubes of plants. J Microbiol Biotechnol Food Sci 2023; 12(6):e5484. https://doi.org/10.55251/jmbfs.5484.
- 40Gorobets S, Gorobets O, Sharay I, Yevzhyk L. The influence of artificial and biogenic magnetic nanoparticles on the metabolism of fungi. Funct Mater 2021; 28: 315-322.
- 41Yang X, Li Z, Polyakova T, Dejneka A, Zablotskii V, Zhang X. Effect of static magnetic field on DNA synthesis: The interplay between DNA chirality and magnetic field left-right asymmetry. FASEB Bioadv 2020; 2: 254-263.
- 42Aarholt E, Flinn EA, Smith CW. Magnetic fields affect the lac operon system. Phys Med Biol 1982; 27: 606-610.
- 43Beretta G, Mastorgio AF, Pedrali L, Saponaro S, Sezenna E. The effects of electric, magnetic and electromagnetic fields on microorganisms in the perspective of bioremediation. Rev Environ Sci Biotechnol 2019; 18: 29-75.
- 44Xu X, Chen M, Chen T, et al. Ultra-high static magnetic field induces a change in the spectrum but not frequency of DNA spontaneous mutations in Arabidopsis thaliana. Front Plant Sci 2023; 14:1305069. https://doi.org/10.3389/fpls.2023.1305069.
- 45Gao W, Liu Y, Zhou J, Pan H. Effects of a strong static magnetic field on bacterium Shewanella oneidensis: An assessment by using whole genome microarray. Bioelectromagnetics 2005; 26: 558-563.
- 46Okonogi H, Nakagawa M, Tsuji Y. The effects of a 4.7 Tesla static magnetic field on the frequency of micronucleated cells induced by mitomycin C. Tohoku J Exp Med 1996; 180: 209-215.
- 47Yang X, Song C, Zhang L, et al. An upward 9.4 T static magnetic field inhibits DNA synthesis and increases ROS-P53 to suppress lung cancer growth. Transl Oncol 2021; 14:101103.
- 48Ventura C, Maioli M, Pintus G, Gottardi G, Bersani F. Elf-pulsed magnetic fields modulate opioid peptide gene expression in myocardial cells. Cardiovasc Res 2000; 45: 45-1064. https://doi.org/10.1016/S0008-6363(99)00408-3.
- 49Goodman R, Shirley-Henderson A. Transcription and translation in cells exposed to extremely low frequency electromagnetic fields. Bioelectrochem Bioenerg 1991; 25: 335-355. https://doi.org/10.1016/0302-4598(91)80001-J.
- 50Kato M. Electromagnetics in biology. Tokyo: Springer; 2006. https://doi.org/10.1007/978-4-431-27914-3.
10.1007/978-4-431-27914-3 Google Scholar
- 51Tsuchiya K, Okuno K, Ano T, Tanaka K, Takahashi H, Shoda M. High magnetic field enhances stationary phase-specific transcription activity of Escherichia coli. Bioelectrochem Bioenerg 1999; 48: 383-387.
- 52Ikehata M, Iwasaka M, Miyakoshi J, Ueno S, Koana T. Effects of intense magnetic fields on sedimentation pattern and gene expression profile in budding yeast. J Appl Phys 2003; 93: 6724-6726.
- 53Zhang X, Yarema K, Xu A. Impact of static magnetic field (SMF) on microorganisms, plants and animals. Biological effects of static magnetic fields. Springer Singapore: Singapore; 2017. p 133-172.
10.1007/978-981-10-3579-1_5 Google Scholar
- 54Kimura T, Takahashi K, Suzuki Y, et al. The effect of high strength static magnetic fields and ionizing radiation on gene expression and DNA damage in Caenorhabditis elegans. Bioelectromagnetics 2008; 29: 605-614.
- 55Herranz R, Larkin OJ, Dijkstra CE, et al. Microgravity simulation by diamagnetic levitation: Effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genomics 2012; 13: 52.
- 56Tofani S, Barone D, Cintorino M, et al. Static and ELF magnetic fields induce tumor growth inhibition and apoptosis. Bioelectromagnetics 2001; 22: 419-428.
- 57Hirodse H, Nakahara T, Zhang Q-M, Yonei S, Miyakoshi J. Magnetic field with a strong magnetic field gradient (41.7 T/M) induces C-Jun expression in hl-60 cells. In Vitro Cell Dev Biol Animal 2003; 39: 348.
- 58Yang J, Zhang G, Li Q, et al. Effect of high static magnetic fields on biological activities and iron metabolism in MLO-Y4 osteocyte-like cells. Cells 2021; 10: 3519.
- 59Saletnik BA, Puchalska-Sarna A, Saletnik A, Lipa T, Dobrzański B, Puchalski C. Static magnetic fields as a factor in modification of tissue and cell structure: A review. Int Agrophys 2024; 38: 43-75.
- 60Huyan T, Peng H, Cai S, et al. Transcriptome analysis reveals the negative effect of 16 T high static magnetic field on osteoclastogenesis of RAW264.7 cells. Biomed Res Int 2020; 2020: 1-12.
- 61Dong D, Yang J, Zhang G, Huyan T, Shang P. 16 T high static magnetic field inhibits receptor activator of nuclear factor kappa-Β ligand-induced osteoclast differentiation by regulating iron metabolism in Raw264.7 cells. J Tissue Eng Regen Med 2019; 13: 2181-2190.
- 62Kawakami S, Kashiwagi K, Furuno N, Yamashita M, Kashiwagi A, Tanimoto Y. Effects of strong static magnetic fields on amphibian development and gene expression. Jpn J Appl Phys 2006; 45: 6055.
- 63Ge S, Li J, Huang D, et al. Strong static magnetic field delayed the early development of zebrafish. Open Biol 2019; 9:190137.
- 64Miyakoshi J. Effects of static magnetic fields at the cellular level. Prog Biophys Mol Biol 2005; 87: 213-223.
- 65Zablotskii V, Lunov O, Novotná B, et al. Down-regulation of adipogenesis of mesenchymal stem cells by oscillating high-gradient magnetic fields and mechanical vibration. Appl Phys Lett 2014; 105:103702.
- 66Schwenzer NF, Bantleon R, Maurer B, et al. Do static or time-varying magnetic fields in magnetic resonance imaging (3.0 T) alter protein–gene expression?—A study on human embryonic lung fibroblasts. J Magn Reson Imaging 2007; 26: 1210-1215.
- 67Yamaguchi-Sekino S, Kira T, Sekino M, Akahane M. Effects of 7 T static magnetic fields on the expression of biological markers and the formation of bone in rats. Bioelectromagnetics 2019; 40: 16-26.
- 68Schreiber WG, Teichmann EM, Schiffer I, et al. Lack of mutagenic and co-mutagenic effects of magnetic fields during magnetic resonance imaging. J Magn Reson Imaging 2001; 14: 779-788.
- 69Tian X, Wang C, Yu B, Fan Y, Zhang L, Zhang X. 9.4 T static magnetic field ameliorates imatinib mesylate-induced toxicity and depression in mice. Eur J Nucl Med Mol Imaging 2023; 50: 314-327.
- 70Luo Y, Ji X, Liu J, et al. Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FU and Taxol. Bioelectrochemistry 2016; 109: 31-40.
- 71Zhao L, Yu Z, Zhao B. Mechanism of VIPR1 gene regulating human lung adenocarcinoma H1299 cells. Med Oncol 2019; 36: 91.
- 72Moody TW, Leyton J, Chan D, et al. VIP receptor antagonists and chemotherapeutic drugs inhibit the growth of breast cancer cells. Breast Cancer Res Treat 2001; 68: 55-64.
- 73Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2009; 2:re3. https://doi.org/10.1126/scisignal.272re3.
- 74Hong FT, Mauzerall D, Mauro A. Magnetic anisotropy and the orientation of retinal rods in a homogeneous magnetic field. Proc Natl Acad Sci U S A 1971; 68: 1283-1285. https://doi.org/10.1073/pnas.68.6.1283.
- 75Rosen AD. Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim Biophys Acta Biomembr 1996; 1282: 149-155. https://doi.org/10.1016/0005-2736(96)00053-3.
- 76Mikami A, Imoto K, Tanabe T, et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 1989; 340: 230-233. https://doi.org/10.1038/340230a0.
- 77Rosen AD. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 2003; 39: 163-174.
- 78Rosen AD. Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics 2003; 24: 517-523. https://doi.org/10.1002/bem.10124.
- 79Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: From bacteria to humans. Int J Nanomedicine 2017; 12: 4371-4395.
- 80Gorobets OY, Gorobets SV, Sorokina LV. Biomineralization and synthesis of biogenic magnetic nanoparticles and magnetosensitive inclusions in microorganisms and fungi. Funct Mater 2014; 21: 427-436.
10.15407/fm21.04.427 Google Scholar
- 81Gorobets SV, Medviediev OV, Gorobets OY, Ivanchenko A. Biogenic magnetic nanoparticles in human organs and tissues. Prog Biophys Mol Biol 2018; 135: 49-57.
- 82Gorobets SV, Gorobets OY, Medviediev OV, Golub VO, Kuzminykh LV. Biogenic magnetic nanoparticles in lung, heart and liver. Funct Mater 2017; 24: 405-408.
- 83Gorobets O, Gorobets S. Dual synthesis of green magnetic and nonmagnetic nanoparticles by microorganisms for wastewater treatment. Green magnetic nanoparticles (GMNPs). Amsterdam, The Netherlands: Elsevier; 2024. p 127-173.
10.1016/B978-0-443-21895-8.00007-2 Google Scholar
- 84Gorobets OY, Gorobets YI, Rospotniuk VP, Legenkiy YA. Electric cell voltage at etching and deposition of metals under an inhomogeneous constant magnetic field. Condens Matter Phys 2014; 17: 43401.
- 85Gorobets OY, Gorobets YI, Rospotniuk VP. Magnetophoretic potential at the movement of cluster products of electrochemical reactions in an inhomogeneous magnetic field. J Appl Phys 2015; 118:073902.
- 86Gorobets OY, Gorobets YI, Rospotniuk VP, Kyba AA, Legenkiy YA. Liquid-liquid phase separation occurring under the influence of inhomogeneous magnetic field in the process of the metal deposition and etching of the magnetized ferromagnetic ball. J Solid State Electrochem 2015; 19: 3001-3012.
- 87Gorobets SV, Gorobets OY, Reshetnyak SA. Permanent magnetic field as an accelerator of chemical reaction and an initiator of rotational motion of electrolyte flows near thin steel wire. J Magn Magn Mater 2004; 272–276: 2408-2409.
- 88Gorobets SV, Gorobets OY, Reshetnyak SA. Electrolyte vortex flows induced by a steady-state magnetic field in the vicinity of a steel wire used as an accelerator of the chemical reaction rate. Magnetohydrodynamics 2003; 39: 211-214.
10.22364/mhd.39.2.7 Google Scholar
- 89Wang CX, Hilburn IA, Wu D-A, et al. Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain. eNeuro 2019; 6: ENEURO.0483-18.2019.
- 90Rosen AD. Threshold and limits of magnetic field action at the presynaptic membrane. BBA-Biomembranes 1994; 1193: 62-66. https://doi.org/10.1016/0005-2736(94)90333-6.
- 91Jin Y, Guo W, Hu X, et al. Static magnetic field regulates Arabidopsis root growth via auxin signaling. Sci Rep 2019; 9: 14384.
- 92Zhu X, Liu Y, Cao X, et al. Moderate static magnetic fields enhance antitumor CD8+ T cell function by promoting mitochondrial respiration. Sci Rep 2020; 10: 14519.
- 93Li H, Xie R, Xu X, et al. Static magnetic field inhibits growth of Escherichia coli colonies via restriction of carbon source utilization. Cells 2022; 11: 827.
- 94Wang Z, Sarje A, Che P-L, Yarema KJ. Moderate strength (0.23–0.28 T) static magnetic fields (SMF) modulate signaling and differentiation in human embryonic cells. BMC Genomics 2009; 10: 356.
- 95Le CP, Matta B. Cellular perception: When the cell model includes a sense order which ensues from a philosophy of nature, the signaling and epigenetics effects which can result from exposure to magnetic fields are described better. Neurosci Med 2011; 02: 161-177.
10.4236/nm.2011.23023 Google Scholar
- 96Zhou J, Yao G, Zhang J, Chang Z. CREB DNA binding activation by a 50-Hz magnetic field in HL60 cells is dependent on extra- and intracellular Ca2+ but not PKA, PKC, ERK, or p38 MAPK. Biochem Biophys Res Commun 2002; 296: 1013-1018.
- 97Mac Neil S, Dawson RA, Crocker G, et al. Extracellular calmodulin and its association with epidermal growth factor in normal human body fluids. J Endocrinol 1988; 118: 501.
- 98WenQiang T, Yi G, Yu S, Jung T, DaYe S. Extracellular calmodulin-binding proteins in body fluids of animals. J Endocrinol 1997; 155: 13-17.
- 99Wu H, Li C, Masood M, et al. Static magnetic fields regulate T-type calcium ion channels and mediate mesenchymal stem cells proliferation. Cells 2022; 11: 2460.
- 100Blackman CF, Benane SG, Rabinowitz JR, House DE, Joines WT. A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 1985; 6: 327-337.
- 101Lange K. Microvillar ion channels: Cytoskeletal modulation of ion fluxes. J Theor Biol 2000; 206: 561-584.
- 102Dini L, Abbro L. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 2005; 36: 195-217.
- 103Silva AKA, Silva ÉL, Egito EST, Carriço AS. Safety concerns related to magnetic field exposure. Radiat Environ Biophys 2006; 45: 245-252.
- 104Gartzke J, Lange K. Cellular target of weak magnetic fields: Ionic conduction along actin filaments of microvilli. Am J Physiol 2002; 283: C1333-C1346.
- 105Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA. Nonequilibrium microtubule fluctuations in a model cytoskeleton. Phys Rev Lett 2008; 100:118104.
- 106Zablotskii V, Lunov O, Kubinova S, Polyakova T, Sykova E, Dejneka A. Effects of high-gradient magnetic fields on living cell machinery. J Phys D Appl Phys 2016:493003.
- 107Dewenter M, von der Lieth A, Katus HA, Backs J. Calcium signaling and transcriptional regulation in cardiomyocytes. Circ Res 2017; 121: 1000-1020.
- 108Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2019; 11: 265-296.
- 109Gorobets SV, Gorobets OY, Rachek KO, Ryazanova AM. Effect of magnetic field and magnetic nanoparticles on endothelial cells phenotype selection. Innovative Biosyst Bioeng 2024; 8: 12-21.
10.20535/ibb.2024.8.3.292667 Google Scholar
- 110Tao Q, Zhang L, Han X, Chen H, Ji X, Zhang X. Magnetic susceptibility difference-induced nucleus positioning in gradient ultrahigh magnetic field. Biophys J 2019; 118: 578-585. https://doi.org/10.1016/j.bpj.2019.12.020.
- 111Spees WM, Yablonskiy DA, Oswood MC, Ackerman JJH. Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility, T1, T2, T, and non-Lorentzian signal behavior. Magn Reson Med 2001; 45: 533-542.
- 112Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 1996; 23: 815-850.
- 113He X, Yablonskiy DA. Biophysical mechanisms of phase contrast in gradient echo MRI. Proc Natl Acad Sci U S A 2009; 106: 13558-13563.
- 114Brammerloh M, Sibgatulin R, Herrmann K-H, et al. In situ magnetometry of iron in human dopaminergic neurons using superresolution MRI and ion-beam microscopy. Phys Rev X 2024; 14:021041.
- 115Zhou X, Zhang L, Zhang P, et al. Comparative transcriptomic analysis revealed important processes underlying the static magnetic field effects on Arabidopsis. Front Plant Sci 2024; 15:1390031. https://doi.org/10.3389/fpls.2024.1390031.