Interaction of Lactic Acid and Silicon-doped Single-walled Carbon Nanotubes: A Density Functional Theory Study
Corresponding Author
Alireza Najafi Chermahini
Department of Chemistry, Isfahan University of Technology, Isfahan 84154-83111, Iran
Corresponding author. Email: [email protected]; [email protected]Search for more papers by this authorAbbas Teimouri
Department of Chemistry, Payame Noor University (PNU), Tehran 19395-4697, Iran
Search for more papers by this authorCorresponding Author
Alireza Najafi Chermahini
Department of Chemistry, Isfahan University of Technology, Isfahan 84154-83111, Iran
Corresponding author. Email: [email protected]; [email protected]Search for more papers by this authorAbbas Teimouri
Department of Chemistry, Payame Noor University (PNU), Tehran 19395-4697, Iran
Search for more papers by this authorAbstract
In this study, we investigate the adsorption of lactic acid (LA) on the outer surface, inside, and at the edge of Si-doped single-walled carbon nanotubes (SWCNTs) with different chiralities using dispersion-corrected hybrid density functional theory. For this propose, the adsorption of LA through its hydroxyl and carboxylic acid groups on Si-doped carbon nanotubes (Si/CNTs) with (4,4), (5,5), and (6,6) chirality is investigated. The geometries of all the studied aggregates have been fully optimized. The results show that the adsorption of LA on the outer surface of Si/CNTs is thermodynamically favored. The adsorption energies for Si/CNTs with (4,4), (5,5), and (6,6) chiralities, calculated at the density functional theory-D level, were in the range −5.17 to −18.62, −5.12 to −16.55, and −5.23 to −26.80 kcal/mol, respectively. Total density of states and projected density of states analysis showed the electronic states related to SWCNTs. The influence of diameter on different electronic properties has been analyzed. In addition, global reactivity descriptors were calculated for Si/CNTs and the modified ones and were compared.
Supporting Information
Filename | Description |
---|---|
jccs201600809-sup-0001-AppendixS1.docxWord 2007 document , 1.2 MB |
Figure S1. The calculated HOMO and LUMO aggregates of LA+SWCNT with (4,4) chirality. Figure S2. The calculated HOMO and LUMO aggregates of LA+SWCNT with (5,5) chirality. Figure S3. The calculated HOMO and LUMO aggregates of LA+SWCNT with (6,6) chirality. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 B. N. Cowan, H. J. Burns, P. Boyle, I. M. Ledingham, Anaesthesia 1984, 39, 750.
- 2 A. Trifiro, G. Saccani, S. Gherardi, E. Vicini, E. Spotti, M. P. Previdi, M. Ndagijimana, S. Cavalli, C. Reschiotto, J. Chromatogr. A 1997, 770, 243.
- 3 C. P. Armstrong, D. M. Dent, P. Berman, M. R. C. Path, R. J. Aitken, Am. J. Gastroenterol. 1984, 79, 675.
- 4 W. Trettnak, O. S. Wolfbeis, Anal. Lett. 1989, 22, 2191.
- 5
P. R. Moret, Lactate: Physiologic, Methodologic, and Pathological Approach, Springer-Verlag, New York, 1980.
10.1007/978-3-642-67525-6 Google Scholar
- 6 G. Broder, M. H. Weil, Science 1964, 143, 1457.
- 7 K. Goetze, S. Walenta, M. Ksiazkiewicz, L. A. K. Schughart, W. M. Klieser, Int. J. Oncol. 2011, 39, 453.
- 8 J. B. Ewaschuk, G. A. Zello, J. M. Naylor, D. R. Brocks, J. Chromatogr. B 2002, 781, 39.
- 9 M.-J. Paik, E.-Y. Cho, H. Kim, K.-R. Kim, S. Choi, Y.-H. Ahn, G. Lee, Biomed. Chromatogr. 2008, 22, 450.
- 10 L. N. Qi, N. D. Danielson, Electrophoresis 2003, 24, 2070.
- 11 D. L. Figenschou, J. P. Marais, Anal. Biochem. 1991, 195, 308.
- 12 C. B. Jacobs, M. J. Peairs, B. J. Venton, Anal. Chim. Acta 2010, 662, 105.
- 13 M. Romero, F. Ahumada, F. Garay, A. Baruzzi, Anal. Chem. 2010, 82, 5568.
- 14 X. Shen, G. Zhang, D. Zhang, Org. Lett. 2012, 14, 1744.
- 15 R. E. Schmitt, H. R. Molitor, T. Wu, Int. J. Electrochem. Sci. 2012, 7, 10835.
- 16 F. Wu, Y. Huang, C. Huang, Biosens. Bioelectron. 2005, 21, 518.
- 17 M. D. Rubianes, G. A. Rivas, Electroanalysis 2004, 17, 73.
- 18 A. Schouten, J. A. Kanters, J. van Krieken, J. Mol. Struct. 1994, 323, 165.
- 19 B. P. van Eijck, J. Mol. Spectrosc. 1983, 101, 133.
- 20 A. Borba, A. Gomez-Zavaglia, L. Lapinskic, R. Fausto, Phys. Chem. Chem. Phys. 2004, 6, 2101.
- 21 A. Smaga, J. Sadlej, J. Phys. Chem. A 2010, 114, 4427.
- 22 D. R. Kauffman, A. Star, Angew. Chem. Int. Ed. 2008, 47, 6550.
- 23 M. Yoosefian, Appl. Surf. Sci. 2017, 392, 225.
- 24 M. Yoosefian, N. Etminan, Z. M. Moghani, S. Mirzaei, S. Abbasi, Superlattice Microstruct 2016, 98, 325.
- 25 M. Yoosefian, N. Etminan, RSC Adv. 2016, 6, 64818.
- 26 M. Yoosefian, H. Raissi, A. Mola, Sens. Actuat. B-Chem. 2015, 212, 55.
- 27 F. R. Baptista, S. A. Belhout, S. Giordani, S. J. Quinn, Chem. Soc. Rev. 2015, 44, 4433.
- 28 S. Kruss, A. J. Hilmer, J. Zhang, N. F. Reuel, B. Mu, M. S. Strano, Adv. Drug Deliv. Rev. 2013, 65, 1933.
- 29 W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, F. Braet, Angew. Chem. Int. Ed. 2010, 49, 2114.
- 30 M. Yoosefian, N. Etminan, Physica E 2016, 81, 116.
- 31 V. Biju, Chem. Soc. Rev. 2014, 43, 744.
- 32 M. Mittal, A. Kumar, Sens. Actuat. B-Chem. 2014, 203, 349.
- 33 J. R. Stetter, G. J. Maclay, In Advanced Micro and Nanosystems, Vol. 1, H. Batles, O. Brand, G. K. Fedder, C. Hierold, J. Korvink, O. Tabata Eds., WILEY-VSH Verlag GmbH & Co. KGaA, Weinheim, 2004.
- 34 A. I. Vasylenko, M. V. Tokarchuk, S. Jurga, J. Phys. Chem. C 2015, 119, 5113.
- 35 A. Boyd, I. Dube, G. Fedorov, M. Paranjape, P. Barbara, Carbon 2014, 69, 417.
- 36 Y. Wang, J. T. W. Yeow, J. Sens. 2009, 2009, 1.
- 37 D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vasquez, R. Beyers, Nature 1993, 363, 605.
- 38
R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, 1998 London.
10.1142/p080 Google Scholar
- 39 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science 2000, 287, 622.
- 40 O. Kuzmych, B. L. Allen, A. Star, Nanotechnology 2007, 18, 375502.
- 41 J. H. Cho, S. J. Yang, K. Lee, C. R. Park, Int. J. Hydrogen Energy 2011, 36, 12286.
- 42 R. J. Baierle, S. B. Fagan, R. Mota, A. J. R. da Silva, A. Fazzio, Phys. Rev. B 2001, 64, 085413.
- 43 S. B. Fagan, A. J. R. da Silva, R. Mota, R. J. Baierle, A. Fazzio, Phys. Rev. B 2003, 67, 33405.
- 44 G. Guo, F. Wang, H. Sun, D. Zhang, Int. J. Quantum Chem. 2008, 108, 203.
- 45 X. Fu, Q.-D. Wang, Z. Liu, F. Peng, Mater. Lett. 2015, 158, 32.
- 46 M. Francisco-Marquez, A. Galano, J. Phys. Chem. C 2016, 120, 24476.
- 47 N. Yuan, H. Bai, Y. Ma, Y. Ji, Physica E 2014, 64, 195.
- 48 A. N. Chermahini, A. Teimouri, H. Farrokhpour, RSC Adv. 2015, 5, 97724.
- 49 R. S. Mulliken, J. Chem. Phys. 1955, 23, 2338.
- 50 Y. Matsuo, K. Tahara, E. Nakamura, Org. Lett. 2003, 5, 3181.
- 51 B. Delley, J. Chem. Phys. 1990, 92, 508.
- 52 B. Delley, J. Chem. Phys. 2000, 113, 7756.