Comprehensive Interactions of ACE Inhibitors With Their Receptor by a Support Vector Machine Model and Molecular Docking
Ya'nan Liang
Key Laboratory of Biorheological Science and Technology, Ministry of Education, School of Bioengineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorDongya Qin
Key Laboratory of Biorheological Science and Technology, Ministry of Education, School of Bioengineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorYonghong Zhang
Medicine Engineering Research Center & School of Pharmacy, Chongqing Medical University, Chongqing, 400016 P. R. China
Search for more papers by this authorCorresponding Author
Wanqian Liu
Key Laboratory of Biorheological Science and Technology, Ministry of Education, School of Bioengineering, Chongqing University, Chongqing, 400044 P. R. China
Corresponding author. Email: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Guizhao Liang
Key Laboratory of Biorheological Science and Technology, Ministry of Education, School of Bioengineering, Chongqing University, Chongqing, 400044 P. R. China
Corresponding author. Email: [email protected]; [email protected]Search for more papers by this authorYa'nan Liang
Key Laboratory of Biorheological Science and Technology, Ministry of Education, School of Bioengineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorDongya Qin
Key Laboratory of Biorheological Science and Technology, Ministry of Education, School of Bioengineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorYonghong Zhang
Medicine Engineering Research Center & School of Pharmacy, Chongqing Medical University, Chongqing, 400016 P. R. China
Search for more papers by this authorCorresponding Author
Wanqian Liu
Key Laboratory of Biorheological Science and Technology, Ministry of Education, School of Bioengineering, Chongqing University, Chongqing, 400044 P. R. China
Corresponding author. Email: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Guizhao Liang
Key Laboratory of Biorheological Science and Technology, Ministry of Education, School of Bioengineering, Chongqing University, Chongqing, 400044 P. R. China
Corresponding author. Email: [email protected]; [email protected]Search for more papers by this authorAbstract
In this work, we characterize the interaction of angiotensin-I-converting enzyme (ACE) inhibitors with their receptor derived from the Binding Database by combining ligand-based and structure-based methods. The ligand-based quantitative structure–activity relationship (QSAR) model by support vector machine (SVM) achieves an overall accuracy of 88.74%, Matthews correlation coefficient of 0.678, and area under the receiver operating characteristic curve of 0.914 with leave-one-out (LOO) cross-validation on 444 training samples. The predictive ability of the model obtained is further verified by predictions on two test sets including 110 and 114 compounds. We show that the SVM-based model, with 2D and 3D QSAR advantages, is simple, accurate, and robust and can be used to predict and identify new ACE inhibitors. The four descriptors, namely the capacity factor, volume, standard deviation, and hydrophilic–lipophilic features, in the QSAR model can well represent the SAR of these inhibitors. In parallel, the structure-based molecular docking studies reveal that hydrogen bond is an important force for the binding affinities of the ACE inhibitors with the receptor. This work is useful in understanding the interaction mechanisms of ACE inhibitors with their receptor, as well as designing of new ACE inhibitors.
Supporting Information
Filename | Description |
---|---|
jccs201600803-sup-0001-Supinfor.docxWord 2007 document , 456.6 KB |
Fig. S1. The performance on the 420 training samples (a) and 104 test samples (b) for 10 times. Fig. S2. The performance on training samples (a) and test samples (b) for mean of the results with 10 times. Table S1. Calculated descriptors, activity indicator, and total score for 544 ACE inhibitor molecules from the Binding Database Table S2. Calculated descriptors, activity indicator, and total score for 114 ACE inhibitor molecules from the literature |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 C. Harrison, K. R. Acharya, J. Cell Commun. Signal. 2014, 8, 195.
- 2 E. D. Sturrock, R. Natesh, V. R. Jm, K. R. Acharya, Cell. Mol. Life Sci. 2004, 61, 2677.
- 3 C. S. Anthony, G. Masuyer, E. D. Sturrock, K. R. Acharya, Curr. Med. Chem. 2012, 19, 845.
- 4 M. A. Zaman, S. Oparil, D. A. Calhoun, Nat. Rev. Drug Discov. 2002, 1, 621.
- 5 N. J. Brown, D. E. Vaughan, Circulation 1998, 97, 1411.
- 6 P. Vlieghe, V. Lisowski, J. Martinez, M. Khrestchatisky, Drug Discov. Today 2010, 15, 40.
- 7 D. J. Craik, D. P. Fairlie, S. Liras, D. A. Price, Chem. Biol. Drug Des. 2013, 81, 136.
- 8 M. Foltz, L. Van Buren, W. Klaffke, G. S. M. J. E. Duchateau, J. Food Sci. 2009, 74, H243.
- 9 J. Wu, R. E. Aluko, J. Pept. Sci. 2007, 13, 63.
- 10 P. Zhou, X. M. Chen, Y. Wu, Z. Shang, Amino Acids 2009, 38, 199.
- 11 N. F. Bras, P. A. Fernandes, M. J. Ramos, ACS Catal. 2014, 4, 2587.
- 12 J. Wu, R. E. Aluko, S. Nakai, J. Agric. Food Chem. 2006, 54, 732.
- 13 J. Wu, R. E. Aluko, S. Nakai, QSAR Comb. Sci. 2006, 25, 873.
- 14 C. Polanco, T. Buhse, V. N. Uversky, Acta Biochim. Pol. 2016, 63, 229.
- 15 H. Long, Y. Wang, Y. Lin, Z. Lin, J. Chin. Chem. Soc. 2010, 57, 417.
- 16 G. Z. Liang, L. Yang, L. Kang, H. C. V. Der Mei, Z. Li, Amino Acids 2008, 37, 583.
- 17 H. Mei, Z. H. Liao, Y. Zhou, S. Z. Li, Biopolymers 2005, 80, 775.
- 18 X. Wang, J. Wang, Y. Lin, Y. Ding, Y. Wang, X. Cheng, Z. Lin, J. Mol. Model. 2010, 17, 1599.
- 19 R. Jahangiri, S. Soltani, A. Barzegar, Pharmaceutical sciences 2014, 20, 122.
- 20 M. Li, D. Wei, H. Zhao, Y. Du, Chemosphere 2014, 95, 220.
- 21 R. D. Cramer, D. E. Patterson, J. D. Bunce, J. Am. Chem. Soc. 1988, 110, 5959.
- 22 I. A. Doytchinova, D. R. Flower, J. Med. Chem. 2001, 44, 3572.
- 23 J. Caballero, M. Saavedra, M. Fernandez, F. D. Gonzalez-Nilo, J. Agric. Food Chem. 2007, 55, 8101.
- 24 S. Wu, W. Qi, R. Su, T. Li, D. Lu, Z. He, Eur. J. Med. Chem. 2014, 84, 100.
- 25 A. A. S. Juan, S. Cho, Bull. Kor. Chem. Soc. 2005, 26, 952.
- 26 R. D. Cramer, J. Med. Chem. 2003, 46, 374.
- 27 S. Kim, M. Chi, C. Yoon, H. Sung, J. Biochem. Mol. Biol. 1998, 31, 459.
- 28 M. Arooj, S. Thangapandian, S. John, S. Hwang, J. K. Park, K. W. Lee, Int. J. Mol. Sci. 2011, 12, 9236.
- 29 W. M. Czarnecki, S. Podlewska, A. J. Bojarski, J. Cheminform. 2015, 7, 38.
- 30 S. K. Kushwaha, P. Chauhan, K. Hedlund, D. Ahren, Bioinformatics 2016, 32, 1223.
- 31 Z. Zhou, C. Cheng, Y. Li, SAR QSAR Environ. Res. 2015, 26, 1001.
- 32 D. B. Kitchen, H. Decornez, J. R. Furr, J. Bajorath, Nat. Rev. Drug Discov. 2004, 3, 935.
- 33 J. Ren, L. Li, R. Zheng, H. Xie, Z. Cao, S. Feng, Y. Pan, X. Chen, Y. Wei, S. Yang, J. Chem. Inf. Model. 2011, 51, 1364.
- 34 T. Liu, Y. Lin, X. Wen, R. N. Jorissen, M. K. Gilson, Nucleic Acids Res. 2007, 35, D198.
- 35 S. A. Depriest, D. Mayer, C. B. Naylor, G. R. Marshall, J. Am. Chem. Soc. 1993, 115, 5372.
- 36 G. Cruciani, P. Crivori, P. Carrupt, B. Testa, J. Mol. Struc.-Theochem 2000, 503, 17.
- 37 P. Labute, J. Mol. Graph. Model. 2000, 18, 464.
- 38 C. Chang, C. Lin, ACM Trans. Intell. Syst. Technol. 2011, 2, 27.
- 39 V. Vapnik, IEEE Trans. Neural Netw. 1999, 10, 988.
- 40 M. Pardo, G. Sberveglieri, Sensor Actuat. B Chem. 2005, 107, 730.
- 41 G. H. Fu, D. S. Cao, Q. S. Xu, H. D. Li, Y. Z. Liang, J. Chemometr. 2011, 25, 92.
- 42 J. Zhang, S. Wang, Neural Comput. & Applic. 2015, 27, 1717.
- 43 H. Kaur, G. P. S. Raghava, Bioinformatics 2004, 20, 2751.
- 44 J. M. Deleo, F. Pucino, K. A. Calis, K. W. Crawford, T. E. Dorworth, J. F. Gallelli, Am. J. Health Syst. Pharm. 1993, 50, 2348.
- 45 B. W. Matthews, Biochim. Biophys. Acta 1975, 405, 442.
- 46 C. Ruizsamblas, S. Medinarodriguez, V. Quirosrodriguez, A. M. Jimenezcarvelo, L. Valverdesom, A. Gonzalezcasado, L. Cuadrosrodriguez, Anal. Methods 2015, 7, 4192.
- 47 Y. Ai, S. Wang, P. Sun, F. Song, Int. J. Mol. Sci. 2011, 12, 1605.
- 48 R. Natesh, S. L. U. Schwager, E. D. Sturrock, K. R. Acharya, Nature 2003, 421, 551.
- 49 N. Guex, M. C. Peitsch, Electrophoresis 1997, 18, 2714.
- 50 S. Pirhadi, F. Shiri, J. B. Ghasemi, RSC Adv. 2015, 5, 104635.
- 51 D. Coomans, D. L. Massart, Anal. Chim. Acta 1982, 136, 15.
- 52 L. Breiman, Mach. Learn. 2001, 45, 5.
- 53 R. D. King, C. Feng, A. D. Sutherland, Appl. Artif. Intell. 1995, 9, 289.
- 54 L. Rokach, Artif. Intell. Rev. 2010, 33, 1.
- 55 W. J. Krzanowski, J. Classif. 1993, 10, 128.
- 56 H. Z. Si, K. J. Zhang, Z. D. Hu, B. T. Fan, QSAR Comb. Sci. 2007, 26, 41.
- 57 N. S. H. N. Moorthy, M. J. Ramos, P. A. Fernandes, RSC Adv. 2011, 1, 1126.
- 58 N. S. H. N. Moorthy, M. J. Ramos, P. A. Fernandes, SAR QSAR Environ. Res. 2012, 23, 521.
- 59 A. T. Girgih, R. He, R. E. Aluko, J. Agric. Food Chem. 2014, 62, 4135.