Excited state relaxation mechanisms of paracetamol and acetanilide
Corresponding Author
Danillo Valverde
Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium
Correspondence
Danillo Valverde, Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000 Mons, Belgium
Email: [email protected]
Paulo Fernando Bruno Gonçalves, Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS 90040-060, Brazil.
Email: [email protected]
Antonio Carlos Borin, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
Email: [email protected]
Search for more papers by this authorRoiney Beal
Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
Search for more papers by this authorCorresponding Author
Paulo Fernando Bruno Gonçalves
Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
Correspondence
Danillo Valverde, Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000 Mons, Belgium
Email: [email protected]
Paulo Fernando Bruno Gonçalves, Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS 90040-060, Brazil.
Email: [email protected]
Antonio Carlos Borin, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Antonio Carlos Borin
Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
Correspondence
Danillo Valverde, Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000 Mons, Belgium
Email: [email protected]
Paulo Fernando Bruno Gonçalves, Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS 90040-060, Brazil.
Email: [email protected]
Antonio Carlos Borin, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Danillo Valverde
Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium
Correspondence
Danillo Valverde, Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000 Mons, Belgium
Email: [email protected]
Paulo Fernando Bruno Gonçalves, Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS 90040-060, Brazil.
Email: [email protected]
Antonio Carlos Borin, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
Email: [email protected]
Search for more papers by this authorRoiney Beal
Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
Search for more papers by this authorCorresponding Author
Paulo Fernando Bruno Gonçalves
Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
Correspondence
Danillo Valverde, Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000 Mons, Belgium
Email: [email protected]
Paulo Fernando Bruno Gonçalves, Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS 90040-060, Brazil.
Email: [email protected]
Antonio Carlos Borin, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Antonio Carlos Borin
Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
Correspondence
Danillo Valverde, Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000 Mons, Belgium
Email: [email protected]
Paulo Fernando Bruno Gonçalves, Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS 90040-060, Brazil.
Email: [email protected]
Antonio Carlos Borin, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
Email: [email protected]
Search for more papers by this authorAbstract
The photochemical pathways of acetanilide and paracetamol were investigated using the XMS-CASPT2 quantum chemical method and the cc-pVDZ (correlation consistent polarized valence double-) basis set. In both compounds, the bright state is the second excited state, designated as a La) state. Through a detailed exploration of the potential energy profile and the conical intersection structure between the La) and ground states, we gained a better understanding of how cleavage might occur in both molecules upon photoexcitation. Other potential relaxation mechanisms, including crossings with the dark and La) states, are also discussed in detail.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
jcc27521-sup-0001-supinfo.docxWord 2007 document , 3.5 MB | Data S1: Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1J. L. Wilkinson, A. B. Boxall, D. W. Kolpin, K. M. Leung, R. W. Lai, C. Galbán-Malagón, A. D. Adell, J. Mondon, M. Metian, R. A. Marchant, Proc. Natl. Acad. Sci. 2022, 119, e2113947119.
- 2S. M. Cook, B. J. VanDuinen, N. G. Love, S. J. Skerlos, Environ. Sci. Technol. 2012, 46, 5535.
- 3M. Clara, O. Gans, S. Weiss, D. Sanz-Escribano, S. Scharf, C. Scheffknecht, Water Res. 2009, 43, 4760.
- 4H. Fromme, S. A. Tittlemier, W. Völkel, M. Wilhelm, D. Twardella, Int. J. Hyg. Environ. Health 2009, 212, 239.
- 5T. Deblonde, C. Cossu-Leguille, P. Hartemann, Int. J. Hyg. Environ. Health 2011, 214, 442.
- 6M. Patel, R. Kumar, K. Kishor, T. Mlsna, C. U. Pittman, D. Mohan, Chem. Rev. 2019, 119, 3510.
- 7J. O. Tijani, O. O. Fatoba, O. O. Babajide, L. F. Petrik, Environ. Chem. Lett. 2016, 14, 27.
- 8M. L. Hedgespeth, Y. Sapozhnikova, P. Pennington, A. Clum, A. Fairey, E. Wirth, Sci. Total Environ. 2012, 437, 1.
- 9M. Gavrilescu, K. Demnerová, J. Aamand, S. Agathos, F. Fava, New Biotechnol. 2015, 32, 147.
- 10Y. C. Lin, W. W. P. Lai, H. Hsin Tung, A. Y. C. Lin, Environ. Monit. Assess. 2015, 187, 256.
- 11S. D. Richardson, T. A. Ternes, Anal. Chem. 2018, 90, 398.
- 12C. K. Gadupudi, L. X. Louis Rice, K. Kantamaneni, Science 2019, 1, 15.
10.3390/sci1010015.v1 Google Scholar
- 13M. S. Díaz-Cruz, M. J. García-Galán, P. Guerra, A. Jelic, C. Postigo, E. Eljarrat, M. Farré, M. J. López de Alda, M. Petrovic, D. Barceló, M. Petrovic, TrAC, Trends Anal. Chem. 2009, 28, 1263.
- 14M. Schriks, M. B. Heringa, M. M. van der Kooi, P. de Voogt, A. P. van Wezel, Water Res. 2010, 44, 461.
- 15M. Stuart, D. Lapworth, E. Crane, A. Hart, Sci. Total Environ. 2012, 416, 1.
- 16X. Bai, A. Lutz, R. Carroll, K. Keteles, K. Dahlin, M. Murphy, D. Nguyen, Chemosphere 2018, 200, 133.
- 17A. F. Albuquerque, J. S. Ribeiro, F. Kummrow, A. J. Nogueira, C. C. Montagner, G. A. Umbuzeiro, Environ. Sci. Process. Impacts 2016, 18, 779.
- 18N. I. Rousis, R. Bade, L. Bijlsma, E. Zuccato, J. V. Sancho, F. Hernandez, S. Castiglioni, Environ. Res. 2017, 156, 31.
- 19K. M. Pochini, J. T. Hoverman, Environ. Pollut. 2017, 221, 359.
- 20R. McKinlay, J. A. Plant, J. N. Bell, N. Voulvoulis, Environ. Int. 2008, 34, 168.
- 21D. J. Karen, R. Draughn, M. Fulton, P. Ross, Pestic. Biochem. Physiol. 1998, 60, 167.
- 22M. Petrovic, D. Barceló, Anal. Bioanal. Chem. 2006, 385, 422.
- 23S. D. Richardson, Anal. Chem. 2008, 80, 4373.
- 24K. E. Murray, S. M. Thomas, A. A. Bodour, Environ. Pollut. 2010, 158, 3462.
- 25S. Wu, L. Zhang, J. Chen, Appl. Microbiol. Biotechnol. 2012, 96, 875.
- 26C. Warwick, J. Roy. Soc. Promot. Health 2008, 128, 320.
- 27D. Chiumello, M. Gotti, G. Vergani, J. Crit. Care 2017, 38, 245.
- 28B. H. Rumack, H. Matthew, Pediatrics 1975, 55, 871.
- 29W. M. Lee, J. Hepatol. 2017, 67, 1324.
- 30R. C. Dart, A. R. Erdman, K. R. Olson, G. Christianson, A. S. Manoguerra, P. A. Chyka, E. Martin Caravati, P. M. Wax, D. C. Keyes, A. D. Woolf, Clin. Toxicol. 2006, 44, 1.
- 31T. Aus der Beek, F.-A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, A. Küster, Environ. Toxicol. Chem. 2016, 35, 823.
- 32J. P. Case, A. J. Baliunas, J. A. Block, Ann. Intern. Med. 2003, 163, 169.
- 33G. C. Machado, C. G. Maher, P. H. Ferreira, M. B. Pinheiro, C.-W. C. Lin, R. O. Day, A. J. McLachlan, M. L. Ferreira, BMJ 2015, 350, 1.
10.1136/bmj.h1 Google Scholar
- 34C. M. Williams, C. G. Maher, J. Latimer, A. J. McLachlan, M. J. Hancock, R. O. Day, C.-W. C. Lin, Lancet 2014, 384, 1586.
- 35L. Carlos, D. O. Mártire, M. C. Gonzalez, J. Gomis, A. Bernabeu, A. M. Amat, A. Arques, Water Res. 2012, 46, 4732.
- 36J. Rivera-Utrilla, M. Sánchez-Polo, M. Á. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez, Chemosphere 2013, 93, 1268.
- 37R. Rosal, A. Rodríguez, J. A. Perdigón-Melón, A. Petre, E. García-Calvo, M. J. Gómez, A. Agüera, A. R. Fernández-Alba, Water Res. 2010, 44, 578.
- 38I. Ahmad, S. Ahmed, Z. Anwar, M. A. Sheraz, M. Sikorski, Int. J. Photoenergy 2016, 2016, 1.
- 39R. K. Gilpin, W. Zhou, J. Chromatogr. Sci. 2004, 42, 15.
- 40U. N. Yadav, H. S. Kumbhar, S. S. Deshpande, S. K. Sahoo, G. S. Shankarling, RSC Adv. 2015, 5, 42971.
- 41I. P. Pozdnyakov, X. Zhang, T. A. Maksimova, V. V. Yanshole, F. Wu, V. P. Grivin, V. F. Plyusnin, J. Photochem. Photobiol. A 2014, 274, 117.
- 42M. Martignac, E. Oliveros, M. T. Maurette, C. Claparols, F. Benoit-Marquié, Photochem. Photobiol. Sci. 2013, 12, 527.
- 43K. Kawabata, K. Sugihara, S. Sanoh, S. Kitamura, S. Ohta, J. Photochem. Photobiol. A 2012, 249, 29.
- 44M. Nassetta, R. H. De Rossi, J. J. Cosa, Can. J. Chem. 1988, 66, 2794.
- 45H. Shizuka, I. Tanaka, Bull. Chem. Soc. Jpn. 1969, 42, 909.
- 46H. Shizuka, Bull. Chem. Soc. Jpn. 1969, 42, 52.
- 47H. Shizuka, Bull. Chem. Soc. Jpn. 1969, 42, 57.
- 48H. Shizuka, I. Tanaka, Bull. Chem. Soc. Jpn. 1968, 41, 2343.
- 49J. Peuravuori, Environ. Sci. Pollut. Res. 2012, 19, 2259.
- 50J. C. Anderson, C. B. Reese, J. Chem. Soc. 1963, I, 1781.
- 51D. Iguchi, R. Erra-Balsells, S. M. Bonesi, Photochem. Photobiol. Sci. 2016, 15, 105.
- 52M. A. Miranda, F. Galindo, Mol. Supramol. Photochem. 2003, 9, 43.
- 53D. Belluš, Adv. Photochem. 1971, 8, 109.
- 54T. Griesser, T. Höfler, G. Jakopic, M. Belzik, W. Kern, G. Trimmel, J. Mater. Chem. 2009, 19, 4557.
- 55D. Belluš, P. Hrdlovič, P. Slama, Collect. Czech. Chem. Commun. 1968, 33, 2646.
- 56C. E. Kalmus, D. M. Hercules, Tetrahedron Lett. 1972, 13, 1575.
10.1016/S0040-4039(01)84689-X Google Scholar
- 57J. W. Meyer, G. S. Hammond, J. Am. Chem. Soc. 1972, 94, 2219.
- 58C. Kalmus, D. M. Hercules, J. Am. Chem. Soc. 1974, 96, 449.
- 59M. R. Sandner, E. Hedaya, D. J. Trecker, J. Am. Chem. Soc. 1968, 90, 7249.
- 60J. M. Toldo, M. Barbatti, P. F. Gonçalves, Phys. Chem. Chem. Phys. 2017, 19, 19103.
- 61H. Shizuka, T. Morita, Y. Mori, I. Tanaka, Bull. Chem. Soc. Jpn. 1969, 42, 1831.
- 62F. Galindo, M. C. Jiménez, M. A. Miranda, Arene Chemistry, John Wiley & Sons, Ltd, New Jersey 2015, p. 889 Chapter 31.
10.1002/9781118754887.ch31 Google Scholar
- 63R. Finnegan, J. Mattice, Tetrahedron 1965, 21, 1015.
- 64S. J. Harris, D. Murdock, M. P. Grubb, G. M. Greetham, I. P. Clark, M. Towrie, M. N. Ashfold, Chem. Sci. 2014, 5, 707.
- 65A. A. Granovsky, J. Chem. Phys. 2011, 134, 214113.
- 66T. Shiozaki, W. Györffy, P. Celani, H.-J. Werner, J. Chem. Phys. 2011, 135, 81106.
- 67B. B. Brodie, J. Axelrod, J. Pharmacol. Exp. Ther. 1948, 94, 22.
- 68B. O. Roos, in Advances in Chemical Physics; Ab Initio Methods in Quantum Chemistry—II, Vol. 69 (Ed: K. P. Lawley), John Wiley & Sons Ltd., Chichester, England 1987, p. 399.
- 69T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
- 70Y. Nishimoto, S. Battaglia, R. Lindh, J. Chem. Theory Comput. 2022, 18, 4269.
- 71G. Ghigo, B. O. Roos, P.-Å. Malmqvist, Chem. Phys. Lett. 2004, 396, 142.
- 72J. P. Zobel, J. J. Nogueira, L. González, Chem. Sci. 2017, 8, 1482.
- 73N. Forsberg, P.-Å. Malmqvist, Chem. Phys. Lett. 1997, 274, 196.
- 74X. Zhu, K. C. Thompson, T. J. Martínez, J. Chem. Phys. 2019, 150, 164103.
- 75I. Fdez. Galván, M. Vacher, A. Alavi, C. Angeli, F. Aquilante, J. Autschbach, J. J. Bao, S. I. Bokarev, N. A. Bogdanov, R. K. Carlson, J. Chem. Theory Comput. 2019, 15, 5925.
- 76C. J. Brown, D. E. C. Corbridge, Acta Crystallogr. 1954, 7, 711.
- 77M. Haisa, S. Kashino, H. Maeda, Acta Crystallogr. B 1974, 30, 2510.
- 78M. F. Khan, R. Razan, R. B. Rashid, F. Tahia, M. A. Rashid, Bangladesh Pharm. J 2016, 19, 170.
10.3329/bpj.v19i2.29276 Google Scholar
- 79P. Govindasamy, S. Gunasekaran, G. R. Ramkumaar, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 130, 621.
- 80H. E. Ungnade, J. Am. Chem. Soc. 1954, 76, 5133.
- 81L. Prabhumirashi, D. Kutty, A. S. Bhide, Spectrochim. Acta A Mol. Biomol. Spectrosc 1983, 39, 663.
- 82J. R. Platt, J. Chem. Phys. 1949, 17, 484.
- 83J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 8, 2999.
10.1021/cr9904009 Google Scholar
- 84J. J. Nogueira, L. González, Annu. Rev. Phys. Chem. 2018, 69, 473.
- 85R. Improta, F. Santoro, L. Blancafort, Chem. Rev. 2016, 116, 3540.
- 86F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 22.
- 87S. Mai, D. Avagliano, M. Heindl, P. Marquetand, M. F. S. J. Menger, M. Oppel, F. Plasser, S. Polonius, M. Ruckenbauer, Y. Shu, D. G. Truhlar, L. Zhang, P. Zobel, L. González, SHARC3.0: Surface hopping including arbitrary couplings—program package for non-adiabatic dynamics. 2023 https://sharc-md.org/
- 88S. Mai, P. Marquetand, L. González, WIREs Comput. Mol. Sci. 2018, 8, e1370.