Ab initio electronic absorption spectra of para-nitroaniline in different solvents: Intramolecular charge transfer effects
Matheus Máximo-Canadas
Departamento de Química, Instituto Militar de Engenharia (IME), Rio de Janeiro, Rio de Janeiro, Brazil
Search for more papers by this authorLucas Modesto-Costa
Department of Physics, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
Search for more papers by this authorCorresponding Author
Itamar Borges Jr
Departamento de Química, Instituto Militar de Engenharia (IME), Rio de Janeiro, Rio de Janeiro, Brazil
Correspondence
Itamar Borges Jr, Departamento de Química, Instituto Militar de Engenharia (IME), Praça General Tibúrcio, 80, Rio de Janeiro, Rio de Janeiro 22290-270, Brazil.
Email: [email protected]
Search for more papers by this authorMatheus Máximo-Canadas
Departamento de Química, Instituto Militar de Engenharia (IME), Rio de Janeiro, Rio de Janeiro, Brazil
Search for more papers by this authorLucas Modesto-Costa
Department of Physics, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
Search for more papers by this authorCorresponding Author
Itamar Borges Jr
Departamento de Química, Instituto Militar de Engenharia (IME), Rio de Janeiro, Rio de Janeiro, Brazil
Correspondence
Itamar Borges Jr, Departamento de Química, Instituto Militar de Engenharia (IME), Praça General Tibúrcio, 80, Rio de Janeiro, Rio de Janeiro 22290-270, Brazil.
Email: [email protected]
Search for more papers by this authorAbstract
Intramolecular charge transfer (ICT) effects of para-nitroaniline (pNA) in eight solvents (cyclohexane, toluene, acetic acid, dichloroethane, acetone, acetonitrile, dimethylsulfoxide, and water) are investigated extensively. The second-order algebraic diagrammatic construction, ADC(2), ab initio wave function is employed with the COSMO implicit and discrete multiscale solvation methods. We found a decreasing amine group torsion angle with increased solvent polarity and a linear correlation between the polarity and ADC(2) transition energies. The first absorption band involves π → π* transitions with ICT from the amine and the benzene ring to the nitro group, increased by 4%–11% for different solvation models of water compared to the vacuum. A second band of pNA is characterized for the first time. This band is primarily a local excitation on the nitro group, including some ICT from the amine group to the benzene ring that decreases with the solvent polarity. For cyclohexane, the COSMO implicit solvent model shows the best agreement with the experiment, while the explicit model has the best agreement for water.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the supplementary material of this article. Additional data are available in GitHub and Zenodo90 and can be accessed via https://doi.org/10.5281/zenodo.10524944.
Supporting Information
Filename | Description |
---|---|
jcc27493-sup-0001-supinfo.docxWord 2007 document , 5.1 MB | Appendix S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1F. Bureš, RSC Adv. 2014, 4, 58826.
- 2R. Misra, S. P. Bhattacharyya, Intramolecular Charge Transfer, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2018.
10.1002/9783527801916 Google Scholar
- 3M. Ipuy, C. Billon, G. Micouin, J. Samarut, C. Andraud, Y. Bretonnière, Org. Biomol. Chem. 2014, 12, 3641.
- 4S. H. Gao, M. S. Xie, H. X. Wang, H. Y. Niu, G. R. Qu, H. M. Guo, Tetrahedron 2014, 70, 4929.
- 5R. M. Jones, L. Lu, R. Helgeson, T. S. Bergstedt, D. W. McBranch, D. G. Whitten, Proc. Natl. Acad. Sci. USA 2001, 98, 14769.
- 6R. Ziessel, G. Ulrich, A. Harriman, M. A. H. Alamiry, B. Stewart, P. Retailleau, Chem. Eur. J. 2009, 15, 1359.
- 7A. A. J. Aquino, I. Borges, R. Nieman, A. Köhn, H. Lischka, Phys. Chem. Chem. Phys. 2014, 16, 20586.
- 8T. Stein, L. Kronik, R. Baer, J. Am. Chem. Soc. 2009, 131, 2818.
- 9S. Karak, F. Liu, T. P. Russell, V. V. Duzhko, ACS Appl. Mater. Interfaces 2014, 6, 20904.
- 10G. Turkoglu, M. E. Cinar, T. Ozturk, Molecules 2017, 22, 1522.
- 11G. Archetti, A. Abbotto, R. Wortmann, Chem. Eur. J. 2006, 12, 7151.
- 12S. J. Xu, Z. Zhou, W. Liu, Z. Zhang, F. Liu, H. Yan, X. Zhu, S. Xu, Z. Zhou, W. Liu, Z. Zhang, X. Zhu, F. Liu, H. Yan, Adv. Mater. 2017, 29, 1704510.
- 13S. Paek, J. K. Lee, J. Ko, Sol. Energy Mater. Sol. Cells 2014, 120, 209.
- 14X. Liang, Q. Zhang, Sci. China Mater. 2017, 60, 1093.
- 15Y. Li, T. Liu, H. Liu, M.-Z. Tian, Y. Li, Acc. Chem. Res. 2014, 47, 1186.
- 16C. Moon, K. Suzuki, K. Shizu, C. Adachi, H. Kaji, J. Kim, Adv. Mater. 2017, 29, 29.
10.1002/adma.201606448 Google Scholar
- 17I. Borges, R. M. P. O. Guimarães, G. Monteiro-de-Castro, N. M. P. Rosa, R. Nieman, H. Lischka, A. J. A. Aquino, J. Comput. Chem. 2023, 44, 2424.
- 18O. S. Khalil, C. J. Seliskar, S. P. McGlynn, J. Chem. Phys. 2003, 58, 1607.
10.1063/1.1679401 Google Scholar
- 19T. P. Carsey, G. L. Findley, S. P. McGlynn, J. Am. Chem. Soc. 1979, 101, 4502.
- 20D. Kosenkov, L. V. Slipchenko, J. Phys. Chem. A 2011, 115, 392.
- 21S. Frutos-Puerto, M. A. Aguilar, I. Fdez Galván, J. Phys. Chem. B 2013, 117, 2466.
- 22S. Millefiori, G. Favini, A. Millefiori, D. Grasso, Spectrochim. Acta A 1977, 33, 21.
- 23C. E. Agudelo-Morales, O. F. Silva, R. E. Galian, J. Pérez-Prieto, ChemPhysChem 2012, 13, 4195.
- 24R. Zaleśny, Chem. Phys. Lett. 2014, 595–596, 109.
- 25B. Champagne, Chem. Phys. Lett. 1996, 261, 57.
- 26A. Nayak, J. Park, K. De Mey, X. Hu, T. V. Duncan, D. N. Beratan, K. Clays, M. J. Therien, ACS Cent. Sci. 2016, 2, 954.
- 27J. N. Woodford, M. A. Pauley, C. H. Wang, J. Phys. Chem. A 1997, 101, 1989.
- 28T. Siva, P. Thirumurugan, P. Jeyanthi, A. Ramadoss, Results Surfaces Interfaces 2022, 8, 100069.
10.1016/j.rsurfi.2022.100069 Google Scholar
- 29M. Rashid, S. Sabir, J. Dispers. Sci. Technol. 2009, 30, 297.
- 30A. A. I. Abed-Elmageed, M. S. Zoromba, R. Hassanien, A. F. Al-Hossainy, Opt. Mater. 2020, 109, 110378.
- 31Z. Mehrani, H. Ebrahimzadeh, A. R. Aliakbar, A. A. Asgharinezhad, Microchim. Acta 2018, 185, 1.
- 32M. Máximo-Canadas, I. Borges, J. Mol. Model. 2024, 30, 120.
- 33Y. S. Zhao, C. Sun, J. Q. Sun, R. Zhou, Sep. Purif. Technol. 2015, 142, 182.
- 34R. Benigni, L. Passerini, Mutat Res/Rev Mutat Res 2002, 511, 191.
- 35W. Xie, J. Zhang, Y. Zeng, H. Wang, Y. Yang, Y. Zhai, D. Miao, L. Li, Anal. Bioanal. Chem. 2020, 412, 5653.
- 36M. Homocianu, A. Airinei, D. O. Dorohoi, J. Adv. Res. Phys. 2017, 2, 011105.
- 37B. J. C. Cabral, K. Coutinho, S. Canuto, J. Phys. Chem. A 2016, 120, 3878.
- 38M. H. Cardenuto, K. Coutinho, B. J. C. Cabral, S. Canuto, Adv. Quantum Chem. 2015, 71, 323.
- 39J. J. Eriksen, S. P. A. Sauer, K. V. Mikkelsen, O. Christiansen, H. J. A. Jensen, J. Kongsted, Mol. Phys. 2013, 111, 1235.
- 40S. Sok, S. Y. Willow, F. Zahariev, M. S. Gordon, J. Phys. Chem. A 2011, 115, 9801.
- 41J. Schirmer, Phys. Rev. A 1982, 26, 2395.
- 42A. B. Trofimov, J. Schirmer, J Phys B: Atomic Mol. Opt. Phys. 1995, 28, 2299.
- 43M. Falkowska, D. T. Bowron, H. G. Manyar, C. Hardacre, T. G. A. Youngs, ChemPhysChem 2016, 17, 2043.
- 44C. Di Mino, A. J. Clancy, A. Sella, C. A. Howard, T. F. Headen, A. G. Seel, N. T. Skipper, J. Phys. Chem. B 2023, 127, 1357.
- 45P. K. Zarzycki, M. B. Zarzycka, M. M. Ślączka, V. L. Clifton, Anal. Bioanal. Chem. 2010, 397, 905.
- 46A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 1993, 5, 799.
- 47K. Coutinho and S. Canuto, 1997, pp. 89–105.
- 48K. Coutinho, S. Canuto, J. Chem. Phys. 2000, 113, 9132.
- 49T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51.
- 50D. Rappoport, F. Furche, J. Chem. Phys. 2010, 133, 134105.
- 51F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 52M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT 2016.
- 53V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995.
- 54M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669.
- 55A. Dreuw, M. Wormit, Wiley Interdiscip. Rev. Comput. Mol. Sci 2015, 5, 82.
- 56G. Braun, I. Borges, A. J. A. Aquino, H. Lischka, F. Plasser, S. A. Do Monte, E. Ventura, S. Mukherjee, M. Barbatti, J. Chem. Phys. 2022, 157, 154305.
- 57T. M. Cardozo, A. J. A. Aquino, M. Barbatti, I. Borges, H. Lischka, J. Phys. Chem. A 2015, 119, 1787.
- 58I. Borges, A. J. A. Aquino, M. Barbatti, H. Lischka, Int. J. Quantum Chem. 2009, 109, 2348.
- 59I. Borges, A. J. A. Aquino, A. Köhn, R. Nieman, W. L. Hase, L. X. Chen, H. Lischka, J. Am. Chem. Soc. 2013, 135, 18252.
- 60I. Borges, E. Uhl, L. Modesto-Costa, A. J. A. Aquino, H. Lischka, J. Phys. Chem. C 2016, 120, 21818.
- 61S. A. Mewes, F. Plasser, A. Krylov, A. Dreuw, J. Chem. Theory Comput. 2018, 14, 710.
- 62T. M. Cardozo, A. P. Galliez, I. Borges, F. Plasser, A. J. A. Aquino, M. Barbatti, H. Lischka, Phys. Chem. Chem. Phys. 2019, 21, 13916.
- 63D. De Castro Araujo, I. B. Valente, T. M. Cardozo, Phys. Chem. Chem. Phys. 2021, 23, 26561.
- 64R. S. Mattos, I. Burghardt, A. J. A. Aquino, T. M. Cardozo, H. Lischka, J. Am. Chem. Soc. 2022, 144, 23492.
- 65L. Modesto-Costa, E. Uhl, I. Borges, J. Comput. Chem. 2015, 36, 2260.
- 66M. V. Bohnwagner, I. Burghard, A. Dreuw, J. Phys. Chem. A 2016, 120, 14.
- 67L. Modesto-Costa, I. Borges, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 201, 73.
- 68F. Haase, R. Ahlrichs, J. Comput. Chem. 1993, 14, 907.
- 69S. G. Balasubramani, G. P. Chen, S. Coriani, M. Diedenhofen, M. S. Frank, Y. J. Franzke, F. Furche, R. Grotjahn, M. E. Harding, C. Hättig, A. Hellweg, B. Helmich-Paris, C. Holzer, U. Huniar, M. Kaupp, A. Marefat Khah, S. Karbalaei Khani, T. Müller, F. Mack, B. D. Nguyen, S. M. Parker, E. Perlt, D. Rappoport, K. Reiter, S. Roy, M. Rückert, G. Schmitz, M. Sierka, E. Tapavicza, D. P. Tew, C. Van Wüllen, V. K. Voora, F. Weigend, A. Wodyński, J. M. Yu, J. Chem. Phys. 2020, 152, 184107.
- 70Y. J. Franzke, C. Holzer, J. H. Andersen, T. Begušić, F. Bruder, S. Coriani, F. Della Sala, E. Fabiano, D. A. Fedotov, S. Fürst, S. Gillhuber, R. Grotjahn, M. Kaupp, M. Kehry, M. Krstić, F. Mack, S. Majumdar, B. D. Nguyen, S. M. Parker, F. Pauly, A. Pausch, E. Perlt, G. S. Phun, A. Rajabi, D. Rappoport, B. Samal, T. Schrader, M. Sharma, E. Tapavicza, R. S. Treß, V. Voora, A. Wodyński, J. M. Yu, B. Zerulla, F. Furche, C. Hättig, M. Sierka, D. P. Tew, F. Weigend, J. Chem. Theory Comput. 2023, 19, 6859.
- 71W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 1996, 118, 11225.
- 72H. Reis, M. G. Papadopoulos, A. Grzybowski, J. Phys. Chem. B 2006, 110, 18537.
- 73H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, J. Phys. Chem. 1987, 91, 6269.
- 74C. M. Breneman, K. B. Wiberg, J. Comput. Chem. 1990, 11, 361.
- 75H. M. Cezar, S. Canuto, K. Coutinho, J. Chem. Inf. Model. 2020, 60, 3472.
- 76F. Plasser, TheoDORE 1.4, 2016.
- 77F. Plasser, J. Chem. Phys. 2020, 152, 152.
10.1063/1.5143076 Google Scholar
- 78F. Plasser, 2016.
- 79F. Plasser, H. Lischka, J. Chem. Theory Comput. 2012, 8, 2777.
- 80K. N. Trueblood, E. Goldish, J. Donohue, IUCr, Acta Crystallogr. 1961, 14, 1009.
- 81M. Colapietro, A. Domenicano, C. Marciante, G. Portalone, Z. Naturforsch. B: J. Chem. Sci. 1982, 37, 1309.
- 82M. Nieger, CCDC 659427, 2008.
- 83S. Narra, S. W. Chang, H. A. Witek, S. Shigeto, Chem. Eur. J. 2012, 18, 2543.
- 84S. A. Kovalenko, R. Schanz, V. M. Farztdinov, H. Hennig, N. P. Ernsting, Chem. Phys. Lett. 2000, 323, 312.
- 85K. Mohanalingam, H. O. Hamaguchi, Chem. Lett. 1997, 26, 157.
10.1246/cl.1997.157 Google Scholar
- 86C. L. Thomsen, J. Thøgersen, S. R. Keiding, J. Phys. Chem. A 1998, 102, 1062.
- 87C. Reichardt, Chem. Rev. 1994, 94, 2319.
- 88J.-M. Mewes, V. Jovanović, C. M. Marian, A. Dreuw, Phys. Chem. Chem. Phys. 2014, 16, 12393.
- 89B. J. C. Cabral, R. Rivelino, K. Coutinho, S. Canuto, J. Phys. Chem. B 2015, 119, 8397.
- 90M. Máximo-Canadas, I. Borges Jr., Zenodo. 2023. https://doi.org/10.5281/zenodo.10524945
10.5281/zenodo.10524945 Google Scholar
Citing Literature
December 15, 2024
Pages 2899-2911